DOI QR코드

DOI QR Code

Effects of Oxygen Enrichment on the Structure of Premixed Methane/Fluorinated Compound Flames

메탄-불소계 화합물의 예혼합화염 구조에서 산소 부화의 효과

  • Lee, Ki-Yong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • 이기용 (안동대학교 기계공학과)
  • Received : 2011.05.04
  • Accepted : 2011.05.30
  • Published : 2011.08.01

Abstract

We performed numerical simulations of freely propagating premixed flames at atmospheric pressure to investigate the influence of trifluoromethane on $CH_4/O_2/N_2$ flames under oxygen enrichment. Trifluoromethane significantly contributed toward a reduction in flame speed, the magnitude of which was larger in terms of the physical effect than the chemical effect. More trifluoromethane could be added and consumed on oxygen-enriched $CH_4/O_2/N_2$ flames. $CHF_3$ was decomposed primarily via $CF_3{\rightarrow}CF_2{\rightarrow}CF{\rightarrow}CF:O{\rightarrow}CO$ and $CHF_3+M{\rightarrow}CF_2+HF+M$ played an important role in oxygen-enhanced flames. When an inhibitor was added to oxygen-enriched flames, the position of the maximum concentration of active radicals was shifted to a relatively low temperature range, and the net rate of OH became higher than that of H.

산소부화 조건의 $CH_4/O_2/N_2$ 화염에서 트리플루오르메탄의 영향을 조사하기 위해 1기압에서 자유롭게 전파하는 예혼합 화염에 대한 수치해석을 수행하였다. 트리플루오르메탄은 화염속도 감소에 기여하며, 감소의 크기는 화학적 효과보다 물리적 효과에 의해 더 크다. 트리플루오르메탄은 산소부화된 $CH_4/O_2/N_2$ 화염에서 더 많이 첨가되고 소비될 수 있다. 트리플루오르메탄은 주로 $CF_3{\rightarrow}CF_2{\rightarrow}CF{\rightarrow}CF:O{\rightarrow}CO$을 통해 분해되고, 산소부화 화염에서 $CHF_3+M{\rightarrow}CF_2+HF+M$이 중요한 역할을 한다. 억제제가 산소 부화 화염에 첨가함에 따라 활성기 최대 농도의 위치는 상대적으로 낮은 온도로 이동하고, OH의 순생성률은 H의 순생성률보다 높다.

Keywords

References

  1. http://unfccc.int/ghg_data/items/3825.php
  2. Burgress, Jr. D.R., Zachariah, M.R., Tsang, W and Westmoreland, P.R., 1996, "Thermochemical and Chemical Kinetic Data for Fluorinated Hydrocarbons," Prog. Energy Combust. Sci., Vol. 21, pp. 453-529.
  3. Linteris, G.T and Truett, L, 1996, "Inhibition of Premixed Methane-Air Flames by Fluoromethanes," Combustion and Flame, Vol. 105, pp. 15-27. https://doi.org/10.1016/0010-2180(95)00152-2
  4. Grosshandler, W, Donnelly M. and Womeldorf, C., 1998, "Lean Flammability as a Fundamental Refrigerant Property," NISTIR 6229.
  5. Linteris, G.T., Burgess, D.R., Babushok, Jr. V., Zachariah, M., Tasng, W., and Westmoreland, P., 1998, "Inhibition of Premixed Methane-Air Flames by Fluoroethanes and Fluoropropanes," Combustion and Flame, Vol. 113, pp. 164-180. https://doi.org/10.1016/S0010-2180(97)00216-2
  6. L'esperance, D, willians, B.A. and Fleming, J.W., 1999, "Intermediate Species Profiles in Low Pressure Premixed Flames Inhibited by Fluoromethanes," Combustion and Flame, Vol. 117, pp. 709-731. https://doi.org/10.1016/S0010-2180(98)00126-6
  7. Shebeko, Y.N., Azatyan, V.V., Bolodian,I.A., Navzenya, V.Y., Kopylov, S.N., Shebeko, D.Y., and Zamishevski, E.D., 2000, "The Influence of Fluorinated Hydrocarbons on the Combustion of Gaseous Mixutres in a Closed Vessel," Combustion and Flame, Vol. 121, pp. 542-547. https://doi.org/10.1016/S0010-2180(99)00168-6
  8. Takizawa, K., Takahashi, A., Tokuhashi, K, Kondo, S. and Sekiya, A., 2005, "Burning Velocity Measurement of Fluorinated Compounds by the Spherical-Vessel Method," Combustion and Flame, Vol. 141, pp. 298-307. https://doi.org/10.1016/j.combustflame.2005.01.009
  9. Linteris, G., 2006, "Burning Velocity of 1, 1-Diflurorethane (R-152a)," ASHRAE Transactions, Vol. 112, pp. 448-458.
  10. Azatyan, V.V., Shebeko, Yu.N., Shebeko, A.Yu., Navzenya, V.Yu., and Tomilin, A.V., 2007, "An Fluence of Oxygen Content in an Oxidizing Atmosphere on Inhibitive Action of Fluorinated Agents on a Hydrogen Flame," Journal of Loss Prevention in the Process Industries, Vol. 20, pp. 494-500. https://doi.org/10.1016/j.jlp.2007.03.013
  11. Kee, R.J., Grcar, J.F., Smooke, M.D., and Miller, J.A., 1985, Sandia National Laboratories Report No. SAND 85-8240.
  12. Saso, Y., Zhu, D.L., Wang, H., Law, C.K., and Saito, N., 1998, "Laminar Burning Velocities of Trifluoromethane-Methane Mixtures: Experiment and Numeical Simulation," Combustion and Flame, Vol. 114, pp. 457-468. https://doi.org/10.1016/S0010-2180(97)00319-2
  13. Glassman, I. and Yetter, R.A., 2000, Combustion, 4th Ed., Elsevier.
  14. Babushok, V., Tsang, W., Linteris, G.T., and Reinelt, D., 1998, "Chemical Limits to Flame Inhibition," Combustion and Flame, Vol. 115, pp. 551-560. https://doi.org/10.1016/S0010-2180(98)00019-4
  15. Fristrom, R.M. and Sawyer, R.F., 1971, "Flame Inhibition Chemistry," Paper #12 in Proceedings of AGARD Conference, Aircraft Fuels, Lubricants and Fire Safety, Available from NASA Langley Field, VA 23365, Report Distribution and Storage Unit.
  16. Kuo, K.K., 1986, Principles of Combustion, John Wiley & Sons.
  17. Fristrom, R.M. and Tiggelen, P.Van, 1978, "An Interpretation of the Inhibition of C-H-O Flamees by C-H-X Compounds," Seventeen Symposium(International) on Combustion, The Combustion Institute, pp. 773-785.
  18. Babkin, V.S. and V'yun, A.V., 1971, "On the Mechanism of Laminar Flame Propagation at High Pressures," Combustion, Explosion, and Shock Waves, Vol. 7, pp. 203-206. https://doi.org/10.1007/BF00748973
  19. Baratov, A.N., Karagulov, F.A., and Makeev, V.L., 1970, "Investigation of the Region of Inhibition of The Flames of $H_{2}-O_{2}-N_{2}$ Mixtures by Halogenated Hydrocarbons," Combustion, Explosion, and Shock Waves, Vol. 6, pp. 15-21. https://doi.org/10.1007/BF02044890