• Title/Summary/Keyword: 산사태 위험지도

Search Result 49, Processing Time 0.026 seconds

Estimation of Landslide Risk based on Infinity Flow Direction (무한방향흐름기법을 이용한 산사태 위험도 평가)

  • Oh, Sewook;Lee, Giha;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.5-18
    • /
    • 2019
  • In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.

Landslide Susceptibility Mapping by Comparing GIS-based Spatial Models in the Java, Indonesia (GIS 기반 공간예측모델 비교를 통한 인도네시아 자바지역 산사태 취약지도 제작)

  • Kim, Mi-Kyeong;Kim, Sangpil;Nho, Hyunju;Sohn, Hong-Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.927-940
    • /
    • 2017
  • Landslide has been a major disaster in Indonesia, and recent climate change and indiscriminate urban development around the mountains have increased landslide risks. Java Island, Indonesia, where more than half of Indonesia's population lives, is experiencing a great deal of damage due to frequent landslides. However, even in such a dangerous situation, the number of inhabitants residing in the landslide-prone area increases year by year, and it is necessary to develop a technique for analyzing landslide-hazardous and vulnerable areas. In this regard, this study aims to evaluate landslide susceptibility of Java, an island of Indonesia, by using GIS-based spatial prediction models. We constructed the geospatial database such as landslide locations, topography, hydrology, soil type, and land cover over the study area and created spatial prediction models by applying Weight of Evidence (WoE), decision trees algorithm and artificial neural network. The three models showed prediction accuracy of 66.95%, 67.04%, and 69.67%, respectively. The results of the study are expected to be useful for prevention of landslide damage for the future and landslide disaster management policies in Indonesia.

Development of Hazard Prediction Map S/W for Mountain River Road (산지하천도로 재해지도 작성을 위한 SW 개발)

  • Jang, Dae Won;Yang, Dong Min;Kim, Ki Hong
    • Journal of Korean Society of societal Security
    • /
    • v.2 no.1
    • /
    • pp.75-80
    • /
    • 2009
  • The objectives of this research are to develop hazard prediction map S/W for mountain river road. This mountain river road disaster happens by debris flow, landslide, debris accumulation and this cause are locally rainfall and heavy rainfall. System is constructed to GIS base. This research app lied to Kangwondo. We developed protocol to analyze calamity danger in mountain district area and examined propriety system. Furthermore examined the DB required and expression plan for hazard map creation SW construction by mountain rivers road.

  • PDF

Complex Disaster Risk Assessment of Local Road using a Landslide Hazard Map (산사태위험지도를 이용한 도로중심 복합재난 위험도 평가)

  • Kim, Min-Ho;Jang, Chang-Deok;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.31-40
    • /
    • 2022
  • Domestic disaster risk maps are mainly produced and studied as a single disaster map by grid unit and disaster type. In particular, it is necessary to present an evaluation method of the disaster risk map that is more suitable for the relevant facility (local road) in order to utilize the work of practitioners who are mainly in charge of facility maintenance. In this study, an evaluation method was presented to evaluate the risk with a focus on local roads by using the landslide risk map and debris flow risk map provided by the Korea Forest Service. In addition, the risk was evaluated and verified for the provinces located in Gangwon-do. As a result of the evaluation, it was possible to evaluate the risk of grades 1 to 5 for 1,513 evaluation sections in the evaluation section with a total length of 234.59 km.

Extraction of Landslide Risk Area using GIS (GIS를 이용한 산사태 위험지역 추출)

  • Park, Jae-Kook;Yang, In-Tae;Park, Hyeong-Geun;Kim, Tai-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.27-39
    • /
    • 2008
  • Landslides cause enormous economic losses and casualties. Korea has mountainous regions and heavy slopes in most parts of the land and has consistently built new roads and large-scale housing complexes according to its industrial and urban growth. As a result, the damage from landslides becomes greater every year. In summer, landslides frequently occur due to local torrential rains and storms. It is critical to predict the potential areas of landslides in advance and to take preventive measures to minimize consequences and to protect property and human life. The previous study on landslides mostly focused on identifying the causes of landslides in the areas where they occurred, and on analyzing landslide vulnerability around the areas without considering rainfall conditions. Thus there were not enough evaluations of the direct risk of landslides to human life. In this study, potentially risky areas for landslides were identified using the GIS data in order to evaluate direct risk on farmlands, roads, and artificial structures that were closely connected to human life. A map of landslide risk was made taking into account rainfall conditions, and a land use map was also drawn with satellite images and digital maps. Both maps were used to identify potentially risky areas for landslides.

Evaluation on Risk Assessment for Landslide Hazard of Soil Slope Using the Checklists as a Preliminary Investigation Method (점검표를 이용한 토질사면 산사태 예비조사 방법 평가)

  • Kim, Jae Min;Choi, Jung Chan
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • The objective of this study is to evaluate landslide hazard susceptibility and produce the landslide hazard maps for soil slope using checklists as a preliminary investigation method. Tables, proposed by NDMI (National Disaster Management Institute), are applied for slope stability assessment, and are comprised of checklists on soil slopes. Database including engineering properties of soil is constructed through the field survey and results from previous studies for The Mt. Hwangryoeng area at center of Busan. All data related to creating the thematic maps was carried out using ArcGIS 10.0. Results from using this method indicated that soil slope are evaluated from very stable to stable. Moderate stability has been partially presented along the edge of mountain. Results from landslide hazard maps can be used to prevent damage from landslides and facilitate appropriate land use planning.

An Assessment of Ecological Risk by Landslide Susceptibility in Bukhansan National Park (산사태취약성 분석을 통한 북한산국립공원의 생태적 위험도 평가)

  • Kim, Kyung-Tae;Jung, Sung-Gwan;You, Ju-Han;Jang, Gab-Sue
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • This research managed to establish the space information on incidence factors of landslide targeting Bukhansan National Park and aimed at suggesting a basic data for disaster prevention of a landslide for the period to come in Bukhansan National Park through drawing up the map indicating vulnerability to a landslide and ecological risks by the use of overlay analysis and adding-up estimation matrix analysis methods. This research selected slope angle, slope aspect, slope length, drainage, vegetation index(NDVI) and land use as an assessment factor of a landslide and constructed the spatial database at a level of '$30m\times30m$' resolution. The analysis result was that there existed high vulnerability to a landslide almost all over Uidong and Dobong valleys. As for ecological risks, Dobong valley, Yongueocheon valley, Jeongneung valley and Pyeongchang valley were analyzed to be higher, so it is judged that the impact on a landslide risk should be also considered in time of establishing a management plan for these districts for the time to come.

Development of Landslide-Risk Prediction Model thorough Database Construction (데이터베이스 구축을 통한 산사태 위험도 예측식 개발)

  • Lee, Seung-Woo;Kim, Gi-Hong;Yune, Chan-Young;Ryu, Han-Joong;Hong, Seong-Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.4
    • /
    • pp.23-33
    • /
    • 2012
  • Recently, landslide disasters caused by severe rain storms and typhoons have been frequently reported. Due to the geomorphologic characteristics of Korea, considerable portion of urban area and infrastructures such as road and railway have been constructed near mountains. These infrastructures may encounter the risk of landslide and debris flow. It is important to evaluate the highly risky locations of landslide and to prepare measures for the protection of landslide in the process of construction planning. In this study, a landslide-risk prediction equation is proposed based on the statistical analysis of 423 landslide data set obtained from field surveys, disaster reports on national road, and digital maps of landslide area. Each dataset includes geomorphologic characteristics, soil properties, rainfall information, forest properties and hazard history. The comparison between the result of proposed equation and actual occurrence of landslide shows 92 percent in the accuracy of classification. Since the input for the equation can be provided within short period and low cost, and the results of equation can be easily incorporated with hazard map, the proposed equation can be effectively utilized in the analysis of landslide-risk for large mountainous area.