• Title/Summary/Keyword: 산사태 위험도

Search Result 242, Processing Time 0.029 seconds

The Application of GIS for the Prediction of Landslide-Potential Areas (산사태의 발생가능지 예측을 위한 GIS의 적용)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Kim, Sung-Gil;Lee, Ho-Chan
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.38-47
    • /
    • 2002
  • This paper demonstrates a regional analysis of landslide occurrence potential by applying geographic information system to the Kumi City selected as a pilot study area. The estimate criteria related to natural and humane environmental factors which affect landslides were first established. A slope map and a aspect map were extracted from DEM, which was generated from the contour layers of digital topographic maps, and a NDVI vegetation map and a land cover map were obtained through satellite image processing. After the spatial database was constructed, indexes of landslide occurrence potential were computed and then a few landslide-potential areas were extracted by an overlay method. It was ascertained that there are high landslide-potential at areas of about 30% incline, aspects including either south or east at least, adjacent to water areas or pointed end of the water system, in or near fault zones, covered with medium vegetable. For more synthetic and accurate analysis, soil data, forest data, underground water level data, meteorological data and so on should be added to the spatial database.

  • PDF

Case study of landslide types in Korea (우리나라 산사태의 형태분류에 따른 사례)

  • 김원영;김경수;채병곤;조용찬
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.18-35
    • /
    • 2000
  • The most dominant type of landslide in Korea is debris flows which mostly take place along mountain slopes during the rainy season, July to August. The landslides have been reported to begin activation when rainfall is more than 200mm within 2days. The debris flows are usually followed by translational slips which occur upper part of mountain slopes and they transit to debris flow as getting down to the valleys. Lithology, location, slope inclination, grain size distribution of soil, permeability, dry density and porosity have been proved as triggering factor causing translational slides. The triggering data taken from mapping are statistically analysed to get landslide potential quantitatively. Rock mass creeps mostly occur on well bedded sedimentary rocks in Kyeongsang Basin. Although the displacement of rock mass creep is relatively small about 1m, the creep can cause severe hazards due to relatively large volume of the involved rock mass. Examples are rock mass creep occurred in the mouth of Hwangryongsan Tunnel, in Chilgok and in Sachon in 1999. Although the direct factor of the creeps are due to slope cutting at the foot area, more attention is required A rotational slide occurring within thick soil formation or weathered rock is also closely related to bottom part of slope cutting. It is propagated circular or semi-circular type. Especially in korea, the rotational slide may be frequently occurred in Tertiary tuff area. Because they are mainly composed of volcanic ash and pyroclastic materials, well developed joints and high degree of swelling and absorption can easily cause the slide. The landslide among the Pohang-Guryongpo national road is belong to this type of slide.

  • PDF

An Accuracy Assessment of the Terrestrial LiDAR for Landslide Monitoring (산사태 모니터링을 위한 지상라이다 자료의 정확도 평가)

  • Park, Jae-Kook;Lee, Sang-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • Korea has a large number of landslides due to localized torrential downpours and typhoons in summer, causing great human damage and economic losses. In particular, most roads in the Gangwon area are located in mountains, making them expose to a great risk of landslide. Therefore, it is urgent to prepare countermeasures to prevent these landslides. Necessary for that are various slope investigation and high-tech observation techniques for slope maintenance. Recently there have been slope observation techniques using optical fiber sensors, GPS, CCD cameras, Total Station and satellite images; however, these are not used much due to poor economic feasibility, low accuracy and efficiency. This study evaluated accuracy of displacement extraction of model slopes using terrestrial LiDAR to determine its application to landslide monitoring. As a result, it can measure several mm of minute displacement with high accuracy and help to rapidly obtain geographical features of slope.

Study on the Development of Ubiquitous-Based Landslide with a Debris Flow Monitoring System (유비퀴터스 기반 토석류 산사태 모니터링 시스템 개발에 관한 연구)

  • Kim, Yong-Gyun;An, Dae-Young;Kang, Dea-Woo;Han, Byung-Won
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.511-522
    • /
    • 2008
  • Domestic slope related measuring system are mainly depending on manual and visual measurements and technical development for natural slopes is poor since the technology is developed focusing on artificial cut slopes. In addition, landslide with a debris flow is occurring frequently due to recent climate abnormally and heavy rains but early forecasts and prevention of disasters are in poor condition. Therefore, construction of ubiquitous sensor network (USN) capable of detecting dangers of landslide for rapid countermeasures is necessary. In this study, new measurements devices and measurement management techniques in compliance with domestic conditions are prepared by establishing ubiquitous based landslide monitoring system and standards of measurement management.

Disaster risk predicted by the Topographic Position and Landforms Analysis of Mountainous Watersheds (산지유역의 지형위치 및 지형분석을 통한 재해 위험도 예측)

  • Oh, Chae-Yeon;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • Extreme climate phenomena are occurring around the world caused by global climate change. The heavy rains exceeds the previous record of highest rainfall. In particular, as flash floods generate heavy rainfall on the mountains over a relatively a short period of time, the likelihood of landslides increases. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. Therefore, in this study, is to predict the risk of disasters by applying topographic classification techniques and landslide risk prediction techniques to mountain watersheds. Classify the hazardous area by calculating the topographic position index (TPI) as a topographic classification technique. The SINMAP method, one of the earth rock predictors, was used to predict possible areas of a landslide. Using the SINMAP method, we predicted the area where the mountainous disaster can occur. As a result, the topographic classification technique classified more than 63% of the total watershed into open slope and upper slope. In the SINMAP analysis, about 58% of the total watershed was analyzed as a hazard area. Due to recent developments, measures to reduce mountain disasters are urgently needed. Stability measures should be established for hazard zone.

Slope Stability Assessment on a Landslide Risk Area in Ulsan During Rainfall (울산 산사태 위험지역의 강우 침투 안정성 평가)

  • Kim, Jinwook;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.6
    • /
    • pp.27-40
    • /
    • 2016
  • Conventional warning criteria for landslides due to rainfall in broad regions have limitations, because they did not have proper reflection of topography, forest physiognomy, and unsaturated soil properties, et al. This study suggested a new stability model for unsaturated slope analyses during rainfall, considering rainfall pattern, geomorphological characteristics (slope angle, soil depth), engineering properties of unsaturated soils, and tree surcharge and root reinforcement. Stability analysis not considering root reinforcement and tree surcharge tends to over-predict a factor of safety in unsaturated slopes. Developed slope stability model was used to build database on the factor of safety in unsaturated slopes during rainfall, and it was integrated with GIS to do quantitative risk analysis in landslide risk areas specified in Ulju. Landslide risk areas were located at downstream of the point with sudden drop in safety factor, as well as at regions with low safety factor during rainfall.

Application of Spatial Data Integration Based on the Likelihood Ratio Function nad Bayesian Rule for Landslide Hazard Mapping (우도비 함수와 베이지안 결합을 이용한 공간통합의 산사태 취약성 분석에의 적용)

  • Chi, Kwang-Hoon;Chung, Chang-Jo F.;Kwon, Byung-Doo;Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.428-439
    • /
    • 2003
  • Landslides, as a geological hazard, have caused extensive damage to property and sometimes result in loss of life. Thus, it is necessary to assess vulnerable areas for future possible landslides in order to mitigate the damage they cause. For this purpose, spatial data integration has been developed and applied to landslide hazard mapping. Among various models, this paper investigates and discusses the effectiveness of the Bayesian spatial data integration approach to landslide hazard mapping. In this study, several data sets related to landslide occurrences in Jangheung, Korea were constructed using GIS and then digitally represented using the likelihood ratio function. By computing the likelihood ratio, we obtained quantitative relationships between input data and landslide occurrences. The likelihood ratio functions were combined using the Bayesian combination rule. In order for predicted results to provide meaningful interpretations with respect to future landslides, we carried out validation based on the spatial partitioning of the landslide distribution. As a result, the Bayesian approach based on a likelihood ratio function can effectively integrate various spatial data for landslide hazard mapping, and it is expected that some suggestions in this study will be helpful to further applications including integration and interpretation stages in order to obtain a decision-support layer.

Porewater Pressure Predictions on Hillside Slopes for Assessing Landslide Risks (II) Development of Groundwater Flow Model (산사태 위험도 추정을 위한 간극수압 예측에 관한 연구(II) -산사면에서의 지하수위 예측 모델의 개발-)

  • Lee, In-Mo;Park, Gyeong-Ho;Im, Chung-Mo
    • Geotechnical Engineering
    • /
    • v.8 no.2
    • /
    • pp.5-20
    • /
    • 1992
  • The physical-based and lumped-parameter hydrologic groundwater flow model for predicting the rainfall-triggered rise of groundwater levels in hillside slopes is developed in this paper to assess the risk of landslides. The developed model consists of a vertical infiltration model for unsaturated zone linked to a linear storage reservoir model(LSRM) for saturated zone. The groundwater flow model has uncertain constants like soil depttL slope angle, saturated permeability, and potential evapotranspiration and four free model parameters like a, b, c, and K. The free model parameters could be estimated from known input-output records. The BARD algorithm is uses as the parameter estimation technique which is based on a linearization of the proposed model by Gauss -Newton method and Taylor series expansion. The application to examine the capacity of prediction shows that the developed model has a potential of use in forecast systems of predicting landslides and that the optimal estimate of potential 'a' in infiltration model is the most important in the global optimum analysis because small variation of it results in the large change of the objective function, the sum of squares of deviations of the observed and computed groundwater levels. 본 논문에서는 가파른 산사면에서 산사태의 발생을 예측하기 위한 수문학적 인 지하수 흐름 모델을 개발하였다. 이 모델은 물리적인 개념에 기본하였으며, Lumped-parameter를 이용하였다. 개발된 지하수 흐름 모델은 두 모델을 조합하여 구성되어 있으며, 비포화대 흐름을 위해서는 수정된 abcd 모델을, 포화대 흐름에 대해서는 시간 지체 효과를 고려할 수 있는 선형 저수지 모델을 이용하였다. 지하수 흐름 모델은 토층의 두께, 산사면의 경사각, 포화투수계수, 잠재 증발산 량과 같은 불확실한 상수들과 a, b, c, 그리고 K와 같은 자유모델변수들을 가진다. 자유모델변수들은 유입-유출 자료들로부터 평가할 수 있으며, 이를 위해서 본 논문에서는 Gauss-Newton 방법을 이용한 Bard 알고리즘을 사용하였다. 서울 구로구 시흥동 산사태 발생 지역의 산사면에 대하여 개발된 모델을 적용하여 예제 해석을 수행함으로써, 지하수 흐름 모델이 산사태 발생 예측을 위하여 이용할 수 있음을 입증하였다. 또한, 매개변수분석 연구를 통하여, 변수 a값은 작은 변화에 대하여 목적함수값에 큰 변화를 일으키므로 a의 값에 대한 최적값을 구하는 것이 가장 중요한 요소라는 결론을 얻었다.

  • PDF