DOI QR코드

DOI QR Code

Disaster risk predicted by the Topographic Position and Landforms Analysis of Mountainous Watersheds

산지유역의 지형위치 및 지형분석을 통한 재해 위험도 예측

  • Oh, Chae-Yeon (Disaster Prevention & Safety Engineering, Kangwon National Univ.) ;
  • Jun, Kye-Won (Graduate School of Disaster Prevention, Kangwon National Univ.)
  • 오채연 (강원대학교 방재안전공학전공) ;
  • 전계원 (강원대학교 방재전문대학원)
  • Received : 2018.12.07
  • Accepted : 2018.12.26
  • Published : 2018.12.31

Abstract

Extreme climate phenomena are occurring around the world caused by global climate change. The heavy rains exceeds the previous record of highest rainfall. In particular, as flash floods generate heavy rainfall on the mountains over a relatively a short period of time, the likelihood of landslides increases. Gangwon region is especially suffered by landslide damages, because the most of the part is mountainous, steep, and having shallow soil. Therefore, in this study, is to predict the risk of disasters by applying topographic classification techniques and landslide risk prediction techniques to mountain watersheds. Classify the hazardous area by calculating the topographic position index (TPI) as a topographic classification technique. The SINMAP method, one of the earth rock predictors, was used to predict possible areas of a landslide. Using the SINMAP method, we predicted the area where the mountainous disaster can occur. As a result, the topographic classification technique classified more than 63% of the total watershed into open slope and upper slope. In the SINMAP analysis, about 58% of the total watershed was analyzed as a hazard area. Due to recent developments, measures to reduce mountain disasters are urgently needed. Stability measures should be established for hazard zone.

최근 기후 변화로 인해 전 세계적으로 이상기후 현상이 일어나고 있으며 우리나라도 예외는 아니다. 과거의 강우기록을 갱신하는 강우가 지속적으로 발생하고 있으며 특히 국지성 집중호우의 경우 짧은 시간에 많은 양의 강우가 좁은 지역에 발생하고 있어 산지재해 발생 또한 증가 하고 있다. 강원도의 경우 지역적 특성상 대부분 산지로 이루어져 있어 경사가 가파르고 토심 또한 얕아 산사태에 의해 많은 피해를 입고 있다. 그러므로 본 연구에서는 산지유역에 지형분류기법과 산사태 위험성 예측기법을 적용하여 재해 위험도를 예측하고자 하였다. 지형분류기법은 지형위치지수를(TPI)를 계산하여 위험 지형을 분류하고 토석류 예측기법중 하나인 SINMAP 방법을 사용하여 산지재해 발생 가능지역을 예측하였다. 그 결과 지형분류기법에서는 전체 유역 중 약 63% 이상 완경사지와 급경사지로 분류되었으며 SINMAP 분석에서는 전체 유역 중 약 58%가 위험 지역으로 분석되었다. 최근 각종 개발로 인해 산지재해의 저감 대책이 마련이 시급한 실정이며 재해 위험 구간에 대한 안정성 대책을 수립하여야 한다.

Keywords

HKBJBA_2018_v11n2_1_f0001.png 이미지

Fig. 1. Location of the study area (Dogye-eup, Samcheok-si, Gangwon-do)

HKBJBA_2018_v11n2_1_f0002.png 이미지

Fig. 2. Target watershed settings

HKBJBA_2018_v11n2_1_f0003.png 이미지

Fig. 3. Diagrams illustrating (a) Infinite slope stability model schematic and (b) the definition of Specific catchment area (SINMAP User manual)

HKBJBA_2018_v11n2_1_f0004.png 이미지

Fig. 4. Elevation map and slope map of the target watershed

HKBJBA_2018_v11n2_1_f0005.png 이미지

Fig. 5. Contours and topographical profile

HKBJBA_2018_v11n2_1_f0006.png 이미지

Fig. 6. Study area TPI map and landform map

HKBJBA_2018_v11n2_1_f0007.png 이미지

Fig. 7. Slope-stability index distribution for study area

HKBJBA_2018_v11n2_1_f0008.png 이미지

Fig. 8. Comparision of the Landslide hazard map and 3D surface map

HKBJBA_2018_v11n2_1_f0009.png 이미지

Fig. 9. Comparison of the Landform map and SINMAP

Table 1. Ten-class landform category (Weiss, 2001)

HKBJBA_2018_v11n2_1_t0001.png 이미지

Table 2. Classes of slope stability based on value of th Stability Index(SI) (Pack, 2001)

HKBJBA_2018_v11n2_1_t0002.png 이미지

Table 3. Classes of slope

HKBJBA_2018_v11n2_1_t0003.png 이미지

Table 4. Areas of features for the landform classification maps

HKBJBA_2018_v11n2_1_t0004.png 이미지

Table 5. Classes of slope stability based on value of the Stability Index (SI)

HKBJBA_2018_v11n2_1_t0005.png 이미지

References

  1. Jun, K. W. and Chae, Y. O. (2011). Study on Risk Analysis of Debris Flow Occurrence Basin Using GIS. Jounal of the KOSOS, 26(2): 83-88.
  2. Kasaia, M., Ikeda, M., Asahina, T., and Fujisawa, K. (2009). LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology. 113, 57-69. https://doi.org/10.1016/j.geomorph.2009.06.004
  3. Kim, P. G., Kun, Y. H. (2017). Numerical Modeling for the Detection of Debris Flow Using Detailed Soil Map and GIS. Journal of the Korean Society of Civil Engineers. 37(1): 43-59. https://doi.org/10.12652/Ksce.2017.37.1.0043
  4. Korea Forest Service. Landslide risk management system. http://sansatai.forest.go.kr.
  5. Park, K. H., Kyung, T. K., Haeng, G. G., and Woo, S. L. (2007). A prediction of forest wetland distribution using Topographic Position Index. Journal of Korea Association Geographic Information Studies 10(1): 194-204.
  6. Pack, R. T. (2001). Terratech Consulting Ltd. SINMAP User's Manual. Utah State University. http://www.crwr.utexas.edu/ gis/gishydro99/uwrl/sinmap/sinmap.pdf.
  7. Park, S. J. (2014). Generality and Specificity of Landforms of the Korean Peninsula, and Its Sustainability. Journal of the Korean geographical Society. 49(5): 656-674.
  8. Montgomery, D. R. and Dietrich, W. E. (1994) A Physically Based Model for the Topographic Control on Shallow Landsliding. Water Resources Research. 30: 1153-1171. https://doi.org/10.1029/93WR02979
  9. Sermin, T. (2008). GIS-based automated landforms classification and topographic, landcover and geologic attributes of landforms around the Yazoren Polje, Turkey. Journal of Applied Sciences 8(6): 910-921. https://doi.org/10.3923/jas.2008.910.921
  10. Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and Turkelboom, F., (2006). Erosion processes in steep terrain-Truths, myths, and uncertainties related to forest management in Southeast Asia. Forest ecology and management. 224, 199-225. https://doi.org/10.1016/j.foreco.2005.12.019
  11. Song, B. G. and Kyungm H. P. (2010). An analysis of cold air generation area considering climate-ecological function. Journal of Korea Association Geographic Information Studies 13(1): 114-127. https://doi.org/10.11108/kagis.2010.13.1.114
  12. Woo, C. S., Chang, W. L., and Yong, H. J. (2008). Study on Application of Topographic Position Index for Prediction of the Landslide Occurrence. J. Korean Env. Res. & Reveg. Tech. 11(2): 1-9.
  13. Weiss, A. D. (2001). Topographic Positions and Landforms Analysis (Conference Poster), San Diego, California: ESRI International User Conference, Indus Corporation.

Cited by

  1. GIS를 이용한 농업시설물 데이터베이스관리시스템 개발 vol.22, pp.4, 2018, https://doi.org/10.5762/kais.2021.22.4.570