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Abstract: Landslides, as a geological hazard, have caused extensive damage to property and sometimes result in loss of
life. Thus, it is necessary to assess vulnerable areas for future possible landslides in order to mitigate the damage they
cause. For this purpose, spatial data integration has been developed and applied to landslide hazard mapping. Among
various models, this paper investigates and discusses the effectiveness of the Bayesian spatial data integration approach to
landslide hazard mapping. In this study, several data sets related to landslide occurrences in Jangheung, Korea were
constructed using GIS and then digitally represented using the likelihood ratio function. By computing the likelihood ratio,
we obtained quantitative relationships between input data and landslide occurrences. The likelihood ratio functions were
combined using the Bayesian combination rule. In order for predicted results to provide meaningful interpretations with
respect to future landslides, we carried out validation based on the spatial partitioning of the landslide distribution. As a
result, the Bayesian approach based on a likelihood ratio function can effectively integrate various spatial data for
landslide hazard mapping, and it is expected that some suggestions in this study will be helpful to further applications
including integration and interpretation stages in order to obtain a decision-support layer.
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Infroduction

Nowadays, the occurrences and extent of damage
from geological hazards on human settlements are
increasing. Even a small natural disaster can impact
upon our human settlements very seriously and it
will become progressively worse in the future. Land-
slides, as a geological hazard, are among the most
costly catastrophic events in terms of human lives
and infrastructure damage. Landslides may be
induced by the progressive weakening of slope
materials by slow natural processes, such as weath-
ering and tectonic uplift, while others are induced
by dynamic variables such as rainfall and local
downpours (Zhou et al, 2002). Especially, land-
slides triggered by heavy rainfall are the most com-
mon throughout Korea.

For the planning of future land use for economic
activities and the prediction of possible landsliding
zone, an essential component is the identification of
those areas that are vulnerable to future possible
landslides. Landslide occurrences are connected to a
large number of geomorphological/environmental
variables. Thus, we should consider multiple vari-
ables for landslide hazard mapping, and if we quan-
titatively connect these geomorphological
characteristics with Jandslide occurrences, we can
identify the area that is likely to be affected by
future landslides.

For landslide hazard mapping, many researches
have been carried out (Luzi and Florianna, 1996;
Burton and Bathurst, 1998; Guzzetti et al., 1999;
Dai et al, 2001). Traditional methods have used
GIS to process the large bodies of data related to
the landslide occurrences. Until now, traditional GIS
functionality was based on the overlay analysis
using the weights determined subjectively by experts.
So it is severely affected by an erroneous input
layer, ambiguous influence effects of data sets, inap-
propriate user-defined database query, and fuzziness
of data sets themselves. In addition, most commer-
cially available GISs do not provide information

integration and are developed with insufficient math-

ematical understanding of the data. Thus, insuffi-
cient considerations for geoscience data sets may
result in severely erroneous decision-making. Hence,
we need more systematic usage of spatial data and
methodologies that quantify the spatial relationships
and integrate them efficiently in order to obtain the
most reasonable interpretation.

Until now, most researches have focused on con-
structing quantitative models or methods and genera-
tion of maps showing landslide hazard. However, all
prediction results related to future events are always
subject to uncertainties. Thus, the predictions not
only identify vulnerable areas, but also estimate the
uncertainties associated with the prediction (Chung
and Fabbri, 2003). However, proper interpretation
and quantitative evaluation of prediction have not
been fully considered in landslide hazard mapping.

In this paper, we introduce a probabilistic
approach which implicitly assumes that most of the
information on which decision-making is based is
probabilistic in nature and that precise probability
judgments can be formulated for each problem's
hypothesis. In particular, we employed a Bayesian
approach for landslide hazard mapping that can con-
nect the quantitative relationship among multiple
spatial data sets related to landslide occurrences and
the degrees of uncertainty associated with the data.

In previous work on probabilistic methods for
landslide hazard mapping, Chung and Fabbri (1999)
constructed a probabilistic model based on joint
conditional probability and showed that this model
can be effectively used for landslide hazard map-
ping. In generic mathematical/statistical models for
landslide hazard mapping, it is assumed that there
are distinctive differences between landslide areas
and non-landslide areas. The joint conditional proba-
bility only considers the portion of landslides in a
certain attribute at once. So it cannot consider the
effects of the remaining non-landslide areas. In addi-
tion, our main objective for landslide hazard assess-
ment is to estimate relative hazard level within the
study area. That is, we wish to separate the hazard-
ous sub-areas affected by landslides and the non-
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hazardous sub-areas not affected by landslides. In
such cases, the ratio of proportions is a useful
descriptive measure. By adopting this idea, in this
paper, we address the likelihood ratio function that
can highlight these differences. Finally, as an essen-
tial part of landslide hazard mapping, we carry out
a validation approach in order to evaluate the signif-
icance of the prediction results.

This paper is structured as follows. In the next
two sections, we present the general concepts of
spatial data integration, the Bayesian approach, and
a likelihood ratio function. Then, a case study from
Jangheung, Korea is described to illustrate the
schemes proposed here. Specifically, in addition to
generating a landslide hazard map, validation of a
hazard map is emphasized for quantitative assess-
ment of the uncertainties related to prediction.
Finally, we conclude with discussion and remarks.

Bayesian Spatial Data Integration

Spatial Data Integration

Spatial data integration covers a very wide
domain and so the term “data integration” has vari-
ous definitions and terms according to the field in
which it is applied. Spatial data integration is the

Spatial data
Observed data layers
(preprocessed)

formal framework that expresses the means and
tools for the alliance of data originating from differ-
ent sources (Wald, 1999). In particular, in geologi-
cal applications (e.g. landslide hazard mapping or
mineral potential mapping), spatial data processing
involves several steps; data acquisition, data pre-pro-
cessing, information representation, integration or
fusion, visualization of the integrated information
with respect to the target proposition, interpretation,
and decision making (Fig. 1). Among these differ-
ent steps, in a mathematical form, information repre-
sentation and integration may also be explained as a
mapping or a transformation between the raw spa-
tial data and the integrated information with respect
to a chosen target proposition. For information rep-
resentation, the sureness that the target proposition is
true is expressed in terms of probability, belief, and
possibility, using the quantitative relationships
between input spatial data and the known occur-
rences. Then the integration of representations into
one single function can be done by various integra-
tion methods, depending on their mathematical
frameworks (Moon, 1993). Among various data inte-
gration methods, we will focus on the Bayesian
probabilistic approach for data representation and

integration of data. In the next section, a general

Landslide hazard map
Mineral potential map

Information

Visualization

representation
&

Decision making

Fig. 1. Schematic flowchart for spatial data integration.

Integration
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rationale of Bayesian data integration will be given.

Bayesian Approach

Bayesian approach provides a formalism for rea-
soning about partial beliefs under conditions of
uncertainty. In this approach, propositions are given
numerical parameters signifying the degree of belief
accorded them under some bodies of knowledges,
and the parameters are combined and manipulated
according to the rules of probability theory (Sivia,
1996; Pearl, 1997).

In the Bayesian approach, sureness measures obey
the basic axioms of probability theory and the basic
expressions are statements about the prior probabil-
ity, likelihood, and posterior probability. One of
main concepts for applications is that the prior
probability is successively updated with the addi-
tion of new evidence, so that the posterior probabil-
ity from adding one piece of evidence can be
treated as the prior probability for adding a new
piece of evidence (Bonham-Carter, 1994; Kwon and
Oh, 2002).

Prob{T,E,, E;, A, E}=

Prob{T,}Prob{E,, E;, A, E,|T,}

In our approach for landslide hazard mapping, a
Bayesian model is based on the conceptual idea of
expressing the landslide hazard in terms of probabil-
ity with respect to spatial data and of combining
them by the Bayesian combination rule. Suppose
that m spatial data related to landslide occurrences
are assembled for the identification of the vulnera-
ble areas for a specific future landslide type in a
study area A. Each layer of spatial data is regarded
as a piece of evidence Ei (i=1, 2, A, m) for the
target proposition such as “At each pixel p, it will
be affected by future flow type landslides”, denoted
by Te The sureness that the target proposition is
true is expressed in terms of conditional probability
in a Bayesian probabilistic framework. In this inter-
pretation, what we want to have is the joint condi-
tional probability, denoted by Prob {Te | E,, Ey, A,
En} (i=1, 2, A, m). This joint conditional probabil-
ity value indicates how each of the m spatial data,
E;, supports the sureness that the proposition is true.
Using Bayes’s theorem, we can obtain the joint con-
ditional probability as follows:

M

where, Prob{Ts} is the prior probability that each
pixel p in the study area A will be affected by
future landslides before we have any spatial data E;
(i=1, 2, A, m). It is a constant for all pixels, since
it relates to neither any specific factor nor any spe-
cific pixels. Prob{E;, Es, A, En} is the probability
that each pixel p in A has the spatial data. Prob{E,,
Ea, A, EqlTp} is the likelihood that the spatial data
will materialize if Tp is true. Prob{THE;, Es, A, En}
is the posterior probability.

In this paper, instead of using the conditional
probability directly, we used the likelihood ratio
function. Unlike a tradition conditional probability
approach, the likelihood ratio function has the
advantage of considering the relative risk.

The basic concept of the likelihood ratio function
is as follows. To identify the hazard areas for future

Prob{E,, E,, A, E,}

landslides, it is necessary to separate the hazardous
sub-areas affected by landslides and the non-hazard-
ous sub-areas not affected by landslides. Suppose
that the study area is divided into two non-overlap-
ping sub-areas. If spatial data are to provide useful
information, then the data from the hazardous sub-
areas should have unique characteristics that are dif-
ferent from the data from the non-hazardous sub-
areas. This suggests that the frequency distributions
of the hazardous and the non-hazardous sub-areas
should be distinctly different. The likelihood ratio
function, which is the ratio of the two frequency
distributions, can highlight this difference (Fig. 2).
Details of the conceptual background and applica-
tions are discussed in some references (Duda et al.,
1976; Chung and Fabbri, 1998).
The joint likelihood ratio at p, A is defined as:
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Fig. 2. Basic concept of the likelihood ratio function.

1-Prob{T,} Prob{T,E,, Ej, A, En}

_Prob{E,, E;, A, Ey[T,} _

Prob{E,, E,, A, E,T,}  Prob{T;}

where i, denotes the proposition that at each
pixel p it will not be affected by future flow-type
landslides.

The joint likelihood ratio is the ratio function of
the joint conditional probability and prior probabil-
ity discussed above. It highlights the relative differ-
ence between the joint conditional probability and
the prior probability at p, even more than the sim-
ple ratio itself, by multiplying the ratio of the
remaining probabilities (Chung and Fabbri, 1998). It
is always positive and ranges from zero to infinity.
It is greater than one if the relations between T,
and i, are positively associated, it is one if they
are independent, and less than one if they are nega-
tively associated. ‘The more the likelihood ratio
exceeds one, the stronger the relationship between
two patterns will be.

To calculate the joint likelihood ratio, we need to
obtain the joint conditional probability in advance.

1-Prob{T,E,, Ej, A, E,}

@

In practice, however, the joint conditional distribu-
tion is rarely specified explicitly. So, as an approxi-
mation, it is assumed that spatial data provide
independent sets of information, namely the condi-
tional independence assumption. Under the condi-
tional independence assumption, we can simplify the
mathematical analysis and computations, and the
joint likelihood ratio can be expressed as a product
of factor-specific conditional distributions, i.e., the
bivariate conditional probability at each layer. In an
evidence sense, the independence assumption is
related to the conceptual understanding of how spa-
tial data are related to landslide occurrences rather
than to actual spatial patterns in spatial data. The
validity of an independence assumption is difficult
to verify. And this assumption is often the only
alternative because the form of the multivariate dis-
tribution is unknown.

_Prob{E,, E, A, EqfT,} _ Prob{E[T,} Prob{E;|T,}  Prob{E,/T,} IEPV o
" Prob{E,, Ey, A, E,Ty} Prob{E|T,} Prob{E,T,} Prob{EmlT} el

Prob{E|T,} _

1-Prob{T,} Prob{T,E}

where, A;= £ =
Prob{E|T,}  Prob{T,}

1-Prob{T,[E}
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Fig. 3. (a) Location map of the study area, (b) landslide
scars that occurred in the study area.

Case study

The Jangheung area in Korea, which had consid-
erable landslide damage following heavy rain in
1998, was selected as the study area (Fig. 3).
Intense rainfall between August 4 and 9, 1998 had
triggered many landslides in the study area. In the
study area, the landslides were mainly flows that
occurred during 3-4 hours of high intensity rainfall,
or shortly after.

A flow diagram of the study is shown in Fig. 4.
For landslide-hazard mapping, first, spatial data
related to landslide occurrences were constructed.
Then, the landslide hazard was analyzed using a
Bayesian method based on likelihood ratio. Finally,
through a validation procedure, we estimated the
uncertainties in terms of the probabilities of the
occurrences.

Input Spatial Data
First, an inventory of landslides was examined
using change detection analysis based on high-reso-

lution panchromatic satellite remotely sensed images
such as two IRS 1-C images and KOMPSAT
(KOrea Multi-Purpose  SATellite) EOC  image,
acquired on 5 June 1998, 12 October 1998, and 2
February 1999, respectively. Before comparison, an
image contrast enhancement technique was applied
to each image. After applying a spectral normaliz-
ing algorithm for reducing the spectral discrepancy
caused by differences in acquisition dates, the image
difference . technique was applied to obtain a map
showing changed areas and non-changed areas. In
Chi et al. (2001), a total of 359 landslides had
been detected. However, the landslide locations
detected from remotely sensed images may include
other land-covers such as roads and tombs. So the
locations were then verified by fieldwork, and
finally a total of 332 landsides were mapped and
the topographically highest 10% of the scars of the
landslides were considered as trigger areas (Fig. 5
().

As the basic analysis tool, GIS was used for spa-
tial data management and manipulation. First, a ras-
ter-based GIS spatial database including spatial data
that are relevant to landslide occurrences was con-
structed. Since the study area mainly consists of
gneiss in lithology and most landslides occurred in
that area, in the whole database only gneiss areas
were considered.

The study area covers approximately 37.29km’
and consists of 1,491,443 pixels, with a pixel size
of 5m by 5m. The spatial database consists of 6
layers. They are (1) the spatial distribution of the
332 landslides; (2) slope; (3) aspect; (4) forest type;
(5) soil; and (6) distances from drainage patterns
(Fig. 5). The slope and aspect were obtained from
the Digital Elevation Model (DEM) of the study
area. Forest type information was extracted from a
1:25,000 scale forest map. Soil information was
extracted from a 1:50,000 scale reconnaissance soil
map. In addition, distances from drainage patterns
extracted from a digital topographic map were used
in the analysis.
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Fig. 4. Schematic diagram showing the processing flow used in this study.

Information representation

We estimated the likelihood ratio functions for
each of spatial data using a quantitative relationship
between past landslides and spatial data. A priori

the number of pixels in all past landslides

probability Prob{T,} and conditional probability
Prob{EIT,} were calculated by using the following
two formulas:

Prob{T,} =

the number of pixels in the whole study area @

the number of pixels in past landslides that occurred in certain class attribute E; 5)

Prob{E|T,} =

The likelihood ratio functions for spatial data are
shown in Table 1. As discussed in Section 2 above,
if the value is greater than one, it means a higher
association, and a value less than one means a
lower association. In the slope map, the likelihood
ratio increased according to the slope angle. In par-
ticular, classes whose slope angle was higher than
20 degrees showed likelihood ratio values greater
than one. This means that most landslides had
occurred in areas where the slope angle is greater
than 20 degrees. In the aspect map, the likelihood
ratio values on east-, southeast-, south- and south-

the number of pixels in certain class attribute E;

west-facing hill slopes were high. These results may
be caused by the difference in hours of sunshine
according to the aspect. In the forest type map, the
likelihood ratio was the highest for Korean nut pine.
This result corresponds with other reported results
that landslide occurrence probability is higher in a
coniferous forest than in a broadleaf forest (Lee and
Min, 2001). On the soil map, the likelihood ratio
values in the soil IV and V rate classes were
higher than those of another classes. According to
the increase in rate, the soil has little soil moisture
and has a low thickness. This is related to an
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Fig. 5. Input spatial data, (a) landslide locations draped over the KOMPSAT EOC imagery, (b) slope map, (c) aspect map, (d)

forest type map, (e) soil map, (f) distances from drainage pattern.

increase of unit weight and of shear stress of soil
due to pore-water increase. For an increase in dis-
tance from a drainage pattern, the likelihood ratio
value increased.

Integration

After obtaining the likelihood ratio function for
each of the spatial data, the joint likelihood ratio
functions were calculated using a Bayesian combina-
tion rule.

We used rank order statistics to visualize the
computed joint likelinood ratio functions and to
express landslide hazard in terms of relative values
in the study area. We first computed the score for

each pixel and then sorted all scores in increasing
order to determine the ranks of the scores. The
pixel that has the smallest score (the smallest pre-
diction value) has rank one, and the pixel that has
the largest score has the maximum rank. Then the
ranks are normalized so that the maximum value is
1 or 100%. The pixel with an index of 100% has
the largest score of the integrated result. If the pix-
els have indexes of 99.5%, it means that the ranks
of their function scores are within the top 0.5%
(99.5-100%) in the study area. Because landslide
hazard has a ranking equal sub-area in the land-
slide hazard map, it is the same as the percentage
of the study area used (i.e. equal-area classes).
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Table 1. Likelihood ratio value of each layer

Layer Class Value Layer Class Value
0-5 0.055
5-10 0.057
10-15 0.190 Broad leaf tree 0.788
15-20 0.791 Mixed broad leaf tree 0464
Slope 20-25 1.218 Forest type Korean nut pine 2.540
(unit: degree) 25-30 1.051 Larch 0.113
30-35 1.656 Rigida pine 0.717
3540 2.400 Pine 0.001
4045 2.174 Non-forest 0.070
45- 2337
N 0.626
NE 1.013 0-100 0.221
E 1455 Distances from 100-200 0.869
SE 1421 drainage pattern 200-300 1.340
Aspect S 1.165 (unit: meter) 300400 1.404
SW 1.255 400-500 1.536
w 0.657 500-600 1.923
NwW 0.529 600- 1.076
Flat 0.001
1I 0.001
il 0.755
v 1.693
Soil A% 1.679
Rocks 0.167
Cultivated Tand 0.001
Etc 0.051

These indexes over the study area constitute the
landslide hazard map.

Through this process, the final landslide hazard
map was generated, as shown in Fig. 6. Especially,
high hazard areas are located in the north-eastern
part of study area. This part mainly consists of
steeply sloping, Korean nut pine, and IV or V rate
soil class whose likelihood ratio values are high.

Validation

The final goal of landslide hazard mapping is to
identify the area that is likely to be affected by
future landslides. Therefore, landslide hazard map-
ping is a kind of a predictor for an unknown future
event. So to generate a significant landslide hazard
map, we should show how successful the predic-
tion would be with respect to future landslides. The
traditional validation approach is to compare the
integrated results with the occurrence of the past

landslides. However, a conceptually proper approach
should compare the integrated results with the
occurrences of future landslides. Since we do not
have any information about what will happen in the
future that is relevant to time and/or space, we need
to use some part of the past landslides as if they
represent future landslides.

Chung and Fabbri (2003) discussed the problem
of providing measures of significance of prediction
results when hazard maps were generated. For this,
they camried out cross-validation, an empirical
approach that tests the prediction map experimen-
tally. In their approach, they used some part of the
past landslides as if they represent future landslides
and then one subset was used for obtaining a haz-
ard map; the other subset was compared with the
hazard map for validation. For partitioning the past
landslides, they proposed three partitioning tech-
niques: time, space, random partitioning. In time
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Fig. 6. Landslide hazard map based on likelihood ratio function. The background is a shaded relief image and black dots indi-

cate the past landslides.

partitioning approach, we can estimate the probabil-
ity of the occurrences of future landslides within a
certain  time constrain. In  space partitioning
approach, we can extend the current prediction
model in the study area to the neighboring areas or
similar environment areas. In random partitioning
approach, the past landslides are randomly divided
into two groups. In the study area, the landslides
were induced by one time event, a heavy rainfall
during some period in 1998 and we have no
records of landslides which had occurred previous or
after 1998. We also could not get any information
on neighboring areas at the time of writing this
paper. So it is not feasible to carry out time or
space partitioning approach. Instead, we carried out
a random partitioning approach for validation.

In this study, to evaluate the landslide hazard map
in Fig. 6, we randomly divided the past 332 land-
slides into two groups. One subset (166 landslides,
estimation set) was used as the estimation data set
to construct probabilistic relationships between the
landslides and the input data set, and used to gener-
ate the landslide hazard map. The integrated land-
slide hazard map based on those relationships was

then evaluated by comparing the map pattern of the
integrated hazard classes with the distribution of the
other subset (166 landslides, validation set), assum-
ing that the landslides have not yet occurred.

To quantitatively find how good the prediction is,
we computed the prediction rate curve proposed by
Chung and Fabbri (1999). Prediction rate is the
measurement of how well the model predicts the
distribution of future landslides. To calculate the pre-
diction rate, we first counted the number of pixels
of validation landslides in the landslide hazard level
whose value is larger than (100 minus a certain
value) %. Then the number was divided by the total
pixel numbers of validation landslides in order to
obtain a normalized prediction rate. The prediction
rate curve is the cumulative version of the predic-
tion rate. It has the form y=function (x) (Fig. 7).
Here, x, ranging from O to 100%, is the percent-
age of relative landslide hazard and corresponds to
the legend in the prediction map, as shown in Fig.
6. And y is the percentage of occurrences pre-
dicted within the most favorable x of the study
area.

To compare the prediction power of the likeli-
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Fig. 7. Prediction rate curve for future landslide hazard.

hood ratio function with that of the conditional
probability, two prediction rate curves were com-
puted (Fig. 7). The likelihood ratio function showed
higher predictive capability than the conditional
probability. For instance, at the most hazardous top
10% areas, the prediction powers of the likelihood
ratio function and the conditional probability func-
tion were about 39% and 30%, respectively. For the
future landslides, if we assume that the type and
size of the future landslides are identical to the past
landslides, and take the most hazardous 10% of the
area of the corresponding integrated image, then we
may estimate that 39% of the future landslides will
be located in the prediction result obtained from the
likelihood ratio function. Since we use the same
spatial data integration method and the same data in
the study area, the prediction rate curve can be used
to interpret the uncertainty in the integrated map
generated by using all past landslides. How to pre-
pare a landslide hazard map is important, but it is
not a final step as far as the interpretation is con-
cerned. Through the above validation procedure, we
can not only evaluate a landslide hazard map quan-
titatively, but also get a meaningful interpretation
with respect to the future landslide occurrences from

the hazard map.

Conclusions

To identify areas that are susceptible to land-

slides, we should not only consider quantitative rela-
tionships between spatial data that represent the
physical conditions of landslide and landslide occur-
rences, but also combine them effectively.

In this study, we applied a Bayesian data integra-
tion approach to landslide hazard mapping using
multiple spatial data sets, and outlined the areas that
will be affected by landslides. This approach
includes mathematically proper representation of the
information from different data sets and an effec-
tive framework for efficient combination of the evi-
dence from each data set to obtain a reasonable and
realistic interpretation. By computing the likelihood
ratio functions of input data sets, we could obtain
quantitative relationships between input spatial data
and past landslides. To assess quantitatively the pre-
diction powers of the prediction map, a cross-valida-
tion approach was also performed, with which we
can evaluate the prediction results quantitatively. This
approach can be considered as a decision-support
layer from the viewpoint of GIS, with additional
quantitative evidence not represented in the inte-
grated landslide hazard map. In addition, this valida-
tion procedure can be used for quantitative
comparison of various spatial data integration meth-
ods by computing the prediction rates. The likeli-
hood ratio function showed the better prediction
power that the results using the traditional condi-
tional probability in this study. However, this result
does not indicate that the likelihood ratio function
shows better predictive capability than the condi-
tional probability in all cases. So more research
should be devoted to extensive experiments in sev-
eral study areas to strengthen the situation here
identified.

In this study, we only investigated the probabilis-
tic integration method for landslide hazard map-
ping. For the future works, we will focus on
constructing other spatial data integration methods,
e.g. fuzzy logic and Shafer’s theory of evidence.
Especially, the validation procedure will play a cru-
cial role in evaluating various methods.
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