• Title/Summary/Keyword: 산불연료

Search Result 71, Processing Time 0.023 seconds

Developing the Forest Fire Occurrence Probability Model Using GIS and Mapping Forest Fire Risks (공간분석에 의한 산불발생확률모형 개발 및 위험지도 작성)

  • An, Sang-Hyun;Lee, Si Young;Won, Myoung Soo;Lee, Myung Bo;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.57-64
    • /
    • 2004
  • In order to decrease the area damaged by forest fires and to prevent the occurrence of forest fires, the forest fire danger rating system was developed to estimate forest fire risk by means of weather, topography, and forest type. Forest fires occurrence prediction needs to improve continually. Logistic regression and spatial analysis was used in developing the forest fire occurrence probability model. The forest fire danger index in accordance to the probability of forest fire occurrence was used in the classification of forest fire occurrence risk regions.

  • PDF

Analysis of the Relationship between Landform and Forest Fire Severity (지형과 산불피해도와의 관계 분석)

  • Lee, Byung-Doo;Won, Myoung-Soo;Jang, Kwang-Min;Lee, Myung-Bo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • Topography factors, as homeostasis variables at forest fire, affect the formation of fuel load patterns, atmospheric phenomena and forest fire behavior. Examination of the correlation between landforms and fire severity is important to decision making for fire hazard analysis and fighting strategies. In this study, fire severity was analyzed using Normalized Burn Ratio(NBR) derived from pre- and post-fire Landsat TM/+ETM images and landform were classified based on Topographic Position Index(TPI) in Samcheok(2000), Cheongyang(2002), and Yangyang(2005) forest fire regions. F-tests and Duncan's multi-range test between landform and fire severity showed that fire severities of headwater, high ridges, and upper slopes is higher than ones of local ridges, midslope ridges, and plains. Fire severity were more sensitive in coniferous forest than broadleaf forests.

  • PDF

Relationships Between Edge Formation of Burned Forests and Landscape Characteristics with Consideration on Spatial Autocorrelation (공간 자기상관성을 고려한 산불피해지 경계 형성과 경관특성변수들과의 관계)

  • Lee, Sang-Woo;Won, Myoung-Soo;Lee, Hyun-Joo
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.113-121
    • /
    • 2013
  • It has been known that edges of forest fire areas play significant roles in post-fire change of forest ecosystem and recovery process. The purpose of this study was to analyze the relationships between edge formation of burned forests and landscape characteristics with consideration on spatial autocorrelation. Samcheok fire site burned in 2000 was selected as the study area. Seven hundred fifty three of 500 $m^2$ grid cells were generated for measuring landscape characteristics. This study used the topographic variables including slop, elevation, topographic wetness index, solar radiation index and proportions of fuel and land use types. In delineating landscape characteristics correlation analysis with modified t-test were performed for exploring the relationships between edge formation and landscape characteristics. The results indicated that edge formation of burned forests was positively correlated with most variables including TWI, SRI, water, paddy, developed, farm, grass, bare soil, and negatively related with elevation, slope and all fuel types. Especially TWI (r=0.437) showed a strong positive correlation with edge formation. According to the results, edge of burned forests were likely formed when proportions of heterogeneous land use types were high with mild slope and low elevation.

산림 내 주요 시설물 주변 낙엽 및 광솔의 연소특성 실험

  • Yeom, Chan-Ho;Lee, Si-Yeong;Gwon, Chun-Geun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.178-178
    • /
    • 2013
  • 본 연구는 산림 내 주요 시설물 주변의 소나무, 리기다소나무, 해송, 잣나무, 굴참나무낙엽 5종 및 소나무광솔 등 주요 산불연료에 대하여 연소특성을 분석하고자 착화특성과 전파특성을 실험 한 결과, 발화온도의 경우 소나무낙엽($285^{\circ}C$)이 가장 낮게 측정되어 발화위험성이 가장 높은 것으로 나타났으며, 착화시간의 경우 굴참나무낙엽(발화온도 $305^{\circ}C$)이 3초로 가장 빠르게 나타났고, 화염유지시간의 경우 굴참나무낙엽이 가장 긴 것으로 나타났다. 또한, 전파특성 실험결과 소나무 광솔이 총열방출량 $72MJ/m_2$, 평균열방출율 $40KW/m_2$, 최대열방출량 $206KW/m_2$로 가장 높았으며, 두번째는 소나무낙엽으로 나타났다. 따라서, 실제 산불에서도 소나무광솔과 소나무낙엽이 화염전파에 더 영향을 줄 것으로 사료되었고, 또한, 연료별 탄소배출량 분석 결과 평균$CO_2$방출량이 가장 큰 수종은 리기다소나무낙엽(1.33kg/kg)이며, 평균CO방출량이 가장 큰 수종은 굴참나무 낙엽(0.075kg/kg)으로 나타났다.

  • PDF

A Study on the Combustion Characteristics for Pine Cones by Species (소나무 솔방울의 수종별 연소특성에 관한 연구)

  • Oh, Jin-Youl;Park, Young-Ju;Lee, Si-Young;Lee, Hae-Pyeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.429-432
    • /
    • 2010
  • 본 연구에서는 산불발생 시 산림 내 연료들의 화재위험성을 분석하고자 산불에 취약한 소나무류(적송, 해송, 리기다소나무)의 솔방울을 대상으로 착화특성과 발연특성을 고찰하였다. 연료는 대형 산불이 빈번하게 발생하는 강원도 동해안 지역에서 채취하였다. 적송과 해송의 솔방울은 26%와 27%로서 함수율 차이가 크지 않았으며, 발화온도는 $380^{\circ}C$ 정도인 것으로 나타났다. 반면, 리기다소나무의 솔방울은 33%의 수분을 함유하였으며, 발화온도는 $352^{\circ}C$ 정도인 것으로 나타났다. 또한, 적송 솔방울의 최대연기밀도는 924Ds로서 해송의 599Ds와 리기다소나무의 605Ds 보다 상대적으로 높았으며, 690s~732s 시간영역에서 최대값을 보이는 것으로 나타났다.

  • PDF

Prediction of Wildfire Spread and Propagation Algorithm for Disaster Area (재난 재해 지역의 산불 확산경로와 이동속도 예측 알고리즘)

  • Koo, Nam-kyoung;Lee, Kang-whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1581-1586
    • /
    • 2016
  • In this paper, we propose a central disaster monitoring system of the forest fire. This system provides the safe-zone and detection to reduce the suppression efforts. In existing system, it has a few providing the predicting of wildfire spread model and speed through topography, weather, fuel factor. This paper focus on the forest fire diffusion model and predictions of the path identified to ensure the safe zone. Also we have considering the forest fire of moving direction and speed for fire suppression and monitering. The proposed algorithm could provide the technique to analyze the attribute information that temperature, wind, smoke measured over time. This proposed central observing monitoring system could provide the moving direction of spred out forecast wildfire. This observing and monitering system analyze and simulation for the moving speed and direction forest fire, it could be able to predict and training the forest fire fighters in a given environment.

Estimation of Biomass of Pinus densiflora Stands Burnt Out by the 2005 Yangyang Forest Fire (2005년 양양산불 피해 소나무림의 연소량 추정)

  • Lee Byung-Doo;Chang Kwang-Min;Chung Joo-Sang;Lee Myung-Bo;Lee Si-Young;Kim Hyung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.20 no.2
    • /
    • pp.267-273
    • /
    • 2006
  • The biomass of Pinus densiflora stands burnt out by the 2005 Yangyang forest fire was estimated based on the grades of fire severity; light, moderate and heavy. In order to measure the post-fire ground biomass in kg/ha, the ground fuels including shrub layer were collected and weighted and the crown biomass was estimated using allometric regressions and leaf area index for dry weight of P. densiflora. The pre-fire biomass was assumed to be equal to that of non-damaged P. densiflora stands having the same characteristics. The results indicated that the forest fire burnt out fuels of stands; 3,693 kg/ha in the light-damaged, 8,724 kg/ha in the moderately-damaged, and 17,451 kg/ha in the heavily-damaged forest stands.

A Study on Mapping Forest Fire Risk Using Combustion Characteristic of Forest Fuels : Focusing on Samcheok in Gangwon-do (산불연료의 연소특성을 활용한 산불위험지도 작성에 관한 연구 : 강원도 삼척 시를 중심으로)

  • Lee, Haepyeong;Park, Youngju
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.296-304
    • /
    • 2017
  • In order to predict about forest fire behavior we constructed a database for combustion characteristic of forest fuels in Samcheok, Gangwon-do and prepared fire risk map and fire risk rating using GIS method in this study. For the mapping autoignition temperature, ignition time, flame duration time, total heat release and total smoke release are selected as the standardized parameters and the overall risk rating was made up of the ignition risk parameters(autoignition temperature, ignition time) and the spread risk parameters(flame duration time, total heat release, total smoke release). Forest fire risk was classified into 5 grades and lower grade of fire risk rating mean to correspond to more dangerous forest fire. As a result, the overall risk rating of Samcheok was classified into three grades from 1 to 3 and Nogok-myeon and Miro-myeon were turned out the most dangerous areas for forest fire. Because of the colony of pine and oak trees and the higher fire loads, the flame propagation will be carried out quickly in these areas.

A Study on Analysis of Carbon Dioxide Emission by Forest Fire - Quercuss Species - (산불에 따른 $CO_2$ 배출량 분석 연구 - 참나무 대상으로 -)

  • Park, Young-Ju;Lee, Hae-Pyeong;Kim, Min-Jung;Kim, Hae-Rim
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.436-440
    • /
    • 2011
  • 본 연구는 산불발생에 따른 온실가스 배출량 추정을 위한 기초 data 제공에 주안점을 두고 산림연료를 대상으로 연소실험을 수행하였다. 연료의 대상은 참나무(굴참, 떡갈, 신갈, 갈참, 졸참, 상수리)를 대상으로 부위별(생엽, 가지, 수피) 채취하여 사용하였으며, 콘칼로리미터를 이용하여 $CO_2$ 배출량을 분석하였다. 중량 50g의 연료 기준에 대한 $CO_2$ 배출량은 생엽 42.38~95.41g, 가지 82.92~113.10g, 수피 72.64~100.70g 정도 범위에서 $CO_2$를 배출하는 것으로 나타났다. 부위별 평균배출량을 살펴보면, 생엽 72.10g, 가지 101.88, 수피 86.46g 정도의 값을 보여 가지부위가 가장 많은 $CO_2$를 배출하는 것을 알 수 있었으며, 또한, $CO_2$를 상대적으로 많이 배출한 수종으로는 상수리나무인 것으로 나타났다.

  • PDF

Identification of Usable Geographic Information for Pilot of Forest Fire Suppression Helicopter and Its Acquisition from Public Data (산불진화헬기 조종사에게 유용한 지리정보의 식별 및 공공 자료로부터의 획득 방안)

  • Ryu, Young-Ki;Kim, Man-Kyu;Park, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.52-67
    • /
    • 2011
  • The research investigates the identification of necessary geographic information needed by forest fire suppression helicopter pilots, and the ways to acquire the required information from public institutions. Firefighting helicopter pilots demand 7 physical geographic and 13 human geographic data. Applying the geographical information acquired from Korean public institutions, the following 15 characteristics (3 physical geographic, 12 human geographic) can be found: altitude and highlands, river, high population and urban areas, roads, national park and state boundaries, fuel re-supply facilities, freshwater areas, cultural assets, (LPG)gas charging stations, gas stations, ammunition storage areas, ground power cables, and steel towers. Within the database of physical geography, there is a need for improvement on bird habitat details. Also, the availability of visibility, wind directions, and wind velocity data is limited and therefore requires refining. The location of refueling areas can be obtained by applying information received from institutions to the GIS spatial analysis.