• Title/Summary/Keyword: 산란파영향

Search Result 60, Processing Time 0.036 seconds

Measuring the Light Dosimetry Within Biological Tissue Using Monte Carlo Simulation (Monte Csrlo 시뮬레이션을 이용한 생체조직내의 광선량 측정)

  • 임현수;구철희
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.199-204
    • /
    • 1999
  • As the correct measuring of the light dosimetry in biological tissues give the important affection to the effect of PDT treatment we used Monte Carlo simulation to measure the light dosimetry on this study. The parameters using in experiments are the optical properties of the real biological tissue, and we used Henyey-Greenstein phase function among the phase functions. As we results, we displayed the result the change of Fluence rate and the difference against the previous theory was at least 0.35%. Biological tissues using in experiment were Human tissue, pig tissue, rat liver tissue and rabbit muscle tissue. The most of biological tissue have big scattering coefficient in visible wavelength which influences penetration depth. The penetration depth of human tissue in visible region is 1.5~2cm. We showed that it is possible to measure fluence rate and penetration depth within the biological tissues by Monte Carlo simulation very well.

  • PDF

A poroelastic model for ultrasonic wave attenuation in partially frozen brines (부분 동결된 소금물에서의 초음파감쇠에 대한 다공성탄성 모델)

  • Matsushima, Jun;Nibe, Takao;Suzuki, Makoto;Kato, Yoshibumi;Rokugawa, Shuichi
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.105-115
    • /
    • 2011
  • Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350.600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.

A Study on the Slowly Varying Wave Drift Force Acting on a Semi-Submersible Platform in Waves (반잠수식 시추선에 작용하는 장주기 표류력에 관한 연구)

  • S.Y.,Hong;P.M.,Lee;D.C.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.49-63
    • /
    • 1989
  • Wave drift forces which are small in magnitudes compared to the first order wave exciting forces can cause very large motion of a vessel in waves. In this paper a theoretical and experimental analysis is made of the mean and slowly varying wave dirft forces on the semi-submersible platform. Theoretical calculations are performed by using near field method with three dimensional diffraction theory and model tests are carried out in regular and irregular waves with a 1/60 semi model. Test results are compared with theoretical calculations and the mooring spring effects in the test are discussed.

  • PDF

A Study on the Analysis of the Microstrip Line by Using Inner Source at the FDTD Method (유한차분 시간영역 해석법에 내부전원을 이용한 마이크로스트립 선로 해석에 관한 연구)

  • 윤성현;정수길;손창수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.5
    • /
    • pp.567-577
    • /
    • 1998
  • When continuous and discontinuous microstrip is analyzed with FDTD(Finite Difference Time Domain) method, we used Berenger's 3D-PML as absorbing boundary condition, and IST(Inner Source Technique) was used for source excitation instead of front excitation that is existing method. In the case using IST, we have observed that analyzed characteristic is not affected by the reduced computational domain of the side and top face in which evanescent field and radiation field is exist. Also, if we control the position of the inner source, we could effectively reject the influence of the reflective wave by mean of imperfective boundary condition. In this paper, by using IST, we have calculated dispersive characteristic and characteristic impedance of the microstrip. And we have calculated magnitude and phase of the scattering coefficient, and obtained equivalent circuit of the open microstrip end.

  • PDF

Monitoring of Bathymetry Changes in the Coastal Area of Dokdo, East Sea (동해 독도 연안 해저지형 변동 모니터링 연구)

  • Chang Hwan Kim;Soon Young Choi;Won Hyuck Kim;Hyun Ok Choi;Chan Hong Park;Yun Bae Kim;Jong Dae Do
    • Economic and Environmental Geology
    • /
    • v.56 no.5
    • /
    • pp.589-601
    • /
    • 2023
  • We compare high-resolution seabed bathymetry data and seafloor backscattering data acquired, using multi-beam, between 2018 and 2021 to understand topographic changes in the coastal area of Dokdo. The study area, conducted within a 500 m × 500 m in the southern coast between the islands where Dongdo Port is located, has been greatly affected by human activities, waves and ocean currents. The depth variations exhibit between 5 - 70 m. Irregular underwater rocks are distributed in areas with a depth of 20 m or less and 30 - 40 m. As a whole, water depth ranges similar in the east-west direction and become flatter and deeper. The bathymetry contour in 2020 tends to move south as a whole compared to 2018 and 2019. The south moving of the contours in the survey area indicates that the water depth is shallower than before. Since the area where the change in the depth occurred is mainly formed of sedimentary layers, the change in the coast of Dokdo were mainly caused by the inflow of sediments, due to the influence of wind and waves caused by these typhoons (Maysak and Haishen) in 2020. In the Talus area, which developed on the shallow coast between Dongdo and Seodo, the bathymetry changed in 2020 due to erosion or sedimentation, compared to the bathymetry in 2019 and 2018. It is inferred that the changes in the seabed environment occur as the coastal area is directly affected by the typhoons. Due to the influence of the typhoons with strong southerly winds, there was a large amount of sediment inflow, and the overall tendency of the changes was to be deposited. The contours in 2021 appears to have shifted mainly northward, compared to 2020, meaning the area has eroded more than 2020. In 2020, sediments were mainly moved northward and deposited on the coast of Dokdo by the successive typhoons. On the contrary, the coast of Dokdo was eroded as these sediments moved south again in 2021. Dokdo has been largely affected by the north wind in winter, so sediments mainly move southward. But it is understood that sediments move northward when affected by strong typhoons. Such continuous coastal change monitoring and analysis results will be used as important data for longterm conservation policies in relation to topographical changes in Dokdo.

Estimation of Soybean Growth Using Polarimetric Discrimination Ratio by Radar Scatterometer (레이더 산란계 편파 차이율을 이용한 콩 생육 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.878-886
    • /
    • 2011
  • The soybean is one of the oldest cultivated crops in the world. Microwave remote sensing is an important tool because it can penetrate into cloud independent of weather and it can acquire day or night time data. Especially a ground-based polarimetric scatterometer has advantages of monitoring crop conditions continuously with full polarization and different frequencies. In this study, soybean growth parameters and soil moisture were estimated using polarimetric discrimination ratio (PDR) by radar scatterometer. A ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the soybean growth condition and soil moisture change. It was set up to obtain data automatically every 10 minutes. The temporal trend of the PDR for all bands agreed with the soybean growth data such as fresh weight, Leaf Area Index, Vegetation Water Content, plant height; i.e., increased until about DOY 271 and decreased afterward. Soil moisture lowly related with PDR in all bands during whole growth stage. In contrast, PDR is relative correlated with soil moisture during below LAI 2. We also analyzed the relationship between the PDR of each band and growth data. It was found that L-band PDR is the most correlated with fresh weight (r=0.96), LAI (r=0.91), vegetation water content (r=0.94) and soil moisture (r=0.86). In addition, the relationship between C-, X-band PDR and growth data were moderately correlated ($r{\geq}0.83$) with the exception of the soil moisture. Based on the analysis of the relation between the PDR at L, C, X-band and soybean growth parameters, we predicted the growth parameters and soil moisture using L-band PDR. Overall good agreement has been observed between retrieved growth data and observed growth data. Results from this study show that PDR appear effective to estimate soybean growth parameters and soil moisture.

Interstitial Photodynamic Therapy (PDT) Set-up for Treating Solid Tumor Using Laser Diode (레이저 다이오드를 이용한 고형암 치료를 위한 간질성 광역학 치료법 개발)

  • Kim Jong-Ki;Kim Ki-Hong
    • Progress in Medical Physics
    • /
    • v.16 no.2
    • /
    • pp.104-109
    • /
    • 2005
  • Photodynamic therapy (PDT) is one of the expectable current cure operation methods. Tumor tissue is treated by abundant oxygen in a body and generated singlet or free radical from exterior laser diode and photosensitizer. Current problem of PDT is the low penetration power of the light beam in a deep seated large tumor and solid tumor thus results in low treatment outcome. In the study, we tried to develop interstitial photodynamics therapy treatment to solve this problem. As the accurate determination of light dosimetry in biological tissue is one of the most important factors affecting the effectiveness of PDT, parameters used in this study are the optical property of biological tissue. Since biological tissues have large scattering coefficient to visible light the penetration depth of a biological tissue in visible light region is only $15\~20$ mm. We showed that it is possible to measure fluence rate and penetration depth within the biological tissues by Monte Carlo simulation very well. Based on the MC simulation study, the effectiveness of interstitial photodynamic therapy on tumor control in solid tumor was proved through in vivo animal experiment.

  • PDF

Theoretical Analysis of FBARs Filters with Bragg Reflector Layers and Membrane Layer (브래그 반사층 구조와 멤브레인 구조의 체적 탄성파 공진기 필터의 이론적 분석)

  • Jo, Mun-Gi;Yun, Yeong-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.4
    • /
    • pp.41-54
    • /
    • 2002
  • In this study, we have analyzed the effects of the membrane layer and the bragg reflector layers on the resonance characteristics through comparing the characteristics of the membrane type FBAR (Film Bulk Acoustic Wave Resonator) and the one type bragg reflector layers with those of the ideal FBAR with top and bottom electrode contacting air by using equivalent circuit technique. It is assumed that ZnO is used for piezoelectric film, $SiO_2$ are used for membrane layer and low acoustic impedance layer, W are used for the high acoustic reflector layer and Al is used for the electrode. Each layer is considered to have a acoustic propagation loss. ABCD parameters are picked out and input impedance is calculated by converting 1-port equivalent circuit to simplified equivalent circuit that ABCD parameters are picked out possible. From the variation of resonance frequency due to the change of thickness of electrode layers, reflector layers and membrane layer it is confirmed that membrane layer and the reflector layer just under the electrode have the greatest effect on the variation of resonance frequency. From the variation of resonance properties, K and electrical Q with the number of layers, K is not much affected by the number of layers but electrical Q increases with the number of layers when the number of layers is less than seven. The electrical Q is saturated when the number of layers is large than six. The electrical Q is dependent of mechanical Q of reflector layers and membrane layer. Both ladder filter and SCF (Stacked Crystal Filters) show higher insertion loss and out-of-band rejection with the increase of the number of resonators. The insertion loss decreases with the increase of the number of reflector layers but the bandwidth is not much affected by the number of reflector layers. Ladder Filter and SCF with membrane layer show the spurious response due to spurious resonance properties. Ladder filter shows better skirt-selectivity characteristics in bandwidth but SCF shows better characteristics in insertion loss.

Quantum Chemical Calculations of the Effect of Si-O Bond Length on X-ray Raman Scattering Features for MgSiO3 Perovskite (양자화학계산을 이용한 Si-O 결합길이가 MgSiO3 페로브스카이트의 X-선 Raman 산란 스펙트럼에 미치는 영향에 대한 연구)

  • Yi, Yoo Soo;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-15
    • /
    • 2014
  • Probing the electronic structures of crystalline Mg-silicates at high pressure is essential for understanding the various macroscopic properties of mantle materials in Earth's interior. Quantum chemical calculations based on the density functional theory are used to explore the atomic configuration and electronic structures of Earth materials at high pressure. Here, we calculate the partial density of states (PDOS) and O K-edge energy-loss near-edge structure (ELNES) spectra for $MgSiO_3$ perovskite at 25 GPa and 120 GPa using the WIEN2k program based on the full-potential linearized projected augmented wave (FP-LPAW) method. The calculated PDOS and O K-edge ELNES spectra for $MgSiO_3$ Pv show significant pressure-induced changes in their characteristic spectral features and relative peak intensity. These changes in spectral features of $MgSiO_3$ Pv indicate that the pressure-induced changes in local atomic configuration around O atoms such as Si-O, O-O, and Mg-O length can induce the significant changes on the local electronic structures around O atoms. The result also indicates that the significant changes in O K-edge features can results from the topological densification at constant Si coordination number. This study can provide a unique opportunity to understand the atomistic origins of pressure-induced changes in local electronic structures of crystalline and amorphous $MgSiO_3$ at high pressure more systematically.