Browse > Article
http://dx.doi.org/10.7582/GGE.2011.14.1.105

A poroelastic model for ultrasonic wave attenuation in partially frozen brines  

Matsushima, Jun (Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo)
Nibe, Takao (Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo)
Suzuki, Makoto (Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo)
Kato, Yoshibumi (Frontier Research Center for Energy and Resources, School of Engineering, The University of Tokyo)
Rokugawa, Shuichi (Department of Technology Management for Innovation, School of Engineering, The University of Tokyo)
Publication Information
Geophysics and Geophysical Exploration / v.14, no.1, 2011 , pp. 105-115 More about this Journal
Abstract
Although there are many possible mechanisms for the intrinsic seismic attenuation in composite materials that include fluids, relative motion between solids and fluids during seismic wave propagation is one of the most important attenuation mechanisms. In our previous study, we conducted ultrasonic wave transmission measurements on an ice-brine coexisting system to examine the influence on ultrasonic waves of the unfrozen brine in the pore microstructure of ice. In order to elucidate the physical mechanism responsible for ultrasonic wave attenuation in the frequency range of 350.600 kHz, measured at different temperatures in partially frozen brines, we employed a poroelastic model based on the Biot theory to describe the propagation of ultrasonic waves through partially frozen brines. By assuming that the solid phase is ice and the liquid phase is the unfrozen brine, fluid properties measured by a pulsed nuclear magnetic resonance technique were used to calculate porosities at different temperatures. The computed intrinsic attenuation at 500 kHz cannot completely predict the measured attenuation results from the experimental study in an ice-brine coexisting system, which suggests that other attenuation mechanisms such as the squirt-flow mechanism and wave scattering effect should be taken into account.
Keywords
attenuation mechanism; Biot theory; partially frozen brines; poroelastic; ultrasonic attenuation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Winkler, K. W., and Nur, A., 1982, Seismic attenuation: Effects of pore fluids and frictional sliding: Geophysics, 47, 1-15. doi:10.1190/1.1441276   DOI   ScienceOn
2 Wood, W. T., Stoffa, P. L., and Shipley, T. H., 1994, Quantitative detection of methane hydrate through high-resolution seismic velocity analysis: Journal of Geophysical Research, 99, 9681-9695. doi:10.1029/ 94JB00238   DOI
3 Yang, D., and Zhang, Z., 2002, Poroelastic wave equation including the Biot/ squirt mechanism and the solid/fluid coupling anisotropy: Wave Motion, 35, 223-245. doi:10.1016/S0165-2125(01)00106-8   DOI   ScienceOn
4 Walsh, J. B., 1966, Seismic attenuation in rock due to friction: Journal of Geophysical Research, 71, 2591-2599.   DOI
5 Meiboom, S., and Gill, D., 1958, Modified spin-echo method for measuring nuclear relaxation times: The Review of Scientific Instruments, 29, 688-691. doi:10.1063/1.1716296   DOI
6 Priest, J. A., Best, A. I., and Clayton, C. R. I., 2006, Attenuation of seismic waves in methane gas hydrate-bearing sand: Geophysical Journal International, 164, 149-159. doi:10.1111/j.1365-246X.2005.02831.x   DOI   ScienceOn
7 Sams, M., and Goldberg, D., 1990, The validity of Qestimates from borehole data using spectral ratios: Geophysics, 55, 97-101. doi:10.1190/ 1.1442776   DOI
8 Spetzler, H., and Anderson, D. L., 1968, The effect of temperature and partial melting on velocity and attenuation in a simple binary system: Journal of Geophysical Research, 73, 6051-6060. doi:10.1029/JB073i018p06051   DOI
9 Matsushima, J., 2006, Seismic wave attenuation in methane hydrate-bearing sediments: Vertical seismic profiling data from the Nankai Trough exploratory well, offshore Tokai, central Japan: Journal of Geophysical Research, 111, B10101. doi:10.1029/2005JB004031   DOI
10 Matsushima, J., Suzuki, M., Kato, Y., Nibe, T., and Rokugawa, S., 2008, Laboratory experiments on compressional ultrasonic wave attenuation in partially frozen brines: Geophysics, 73, N9–N18.   DOI   ScienceOn
11 Dvorkin, J., Mavko, G., and Nur, A., 1995, Squirt flowin fully saturated rocks: Geophysics, 60, 97-107. doi:10.1190/1.1443767   DOI   ScienceOn
12 Klimentos, T., and McCann, C., 1990, Relationships between compressional wave attenuation, porosity, clay content, and permeability of sandstone: Geophysics, 55, 998-1014. doi:10.1190/1.1442928   DOI
13 Leclaire, P., Cohen-Tenoudji, F., and Aguirre-Puente, J., 1994, Extension of Biot's theory of wave propagation to frozen porous media: The Journal of the Acoustical Society of America, 96, 3753-3768. doi:10.1121/1.411336   DOI   ScienceOn
14 Kozeny, J., 1927, Über kapillare Leitung des Wassers im Boden – Aufstieg, Versickerung und Anwendung auf die Bewässerung, Sitzungsberichte der Akademie der Wissenschaften Wien: Mathematisch Naturwissenschaftliche Abteilung, 136, 271-306.
15 Guerin, G., and Goldberg, D., 2002, Sonic waveform attenuation in gas hydrate-bearing sediments from the Mallik 2L–38 research well, Mackenzie Delta, Canada: Journal of Geophysical Research, 107, 2088. doi:10.1029/2001JB000556   DOI
16 Guerin, G., and Goldberg, D., 2005, Modeling of acoustic wave dissipation in gas hydrate - bearing sediments: Geochemistry Geophysics Geosystems, 6, Q07010. doi:10.1029/2005GC000918
17 Gassmann, F., 1951, Uber der Elastizitat poroser Medien: Vieteljahrsschrift der Naturforschenden. Gesellschaft in Zurich, 96, 1-23.
18 Deptuck, D., Harrison, J. P., and Zawadzki, P., 1985, Measurement of elasticity and conductivity of a three-dimensional percolation system: Physical Review Letters, 54, 913-916. doi:10.1103/PhysRevLett.54.913   DOI   ScienceOn
19 Ecker, C., Dvorkin, J., and Nur, M. A., 2000, Estimating the amount of gas hydrate and free gas from marine seismic data: Geophysics, 65, 565-573. doi:10.1190/1.1444752   DOI   ScienceOn
20 Carcione, J. M., Santos, J. E., Ravazzoli, C. L., and Helle, H. B., 2003, Wave simulation in partially frozen porous media with fractal freezing conditions: Journal of Applied Physics, 94, 7839-7847. doi:10.1063/ 1.1606861   DOI   ScienceOn
21 Prasad, M., and Dvorkin, J., 2004, Velocity and attenuation of compressional waves in brines: 74th Annual International Meeting, SEG, Expanded Abstracts, 23, 1666-1669.
22 Walsh, J. B., 1969, New analysis of attenuation in partially melted rock: Journal of Geophysical Research, 74, 4333-4337. doi:10.1029/ JB074i017p04333   DOI
23 Suzuki, M., Matsushima, J., Kato, Y., Nibe, T., and Rokugawa, S., 2010, Ultrasonic wave-transmission measurement system on an ice-brine coexisting system: Butsuri Tansa, 63, 239-249. [in Japanese with English abstract]
24 Tada, R., 1999, Experimental study of the elastic wave propagation in the granular composite material: Butsuri Tansa, 52, 28-42. [in Japanese with English abstract]
25 Pham, N. H., Carcione, J. M., Helle, H. B., and Ursin, B., 2002, Wave velocities and attenuation of shaley sandstones as a function of pore pressure and partial saturation: Geophysical Prospecting, 50, 615–627. doi:10.1046/j.1365-2478.2002.00343.x   DOI   ScienceOn
26 Plona, T. J., 1980, Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies: Applied Physics Letters, 36, 259-261. doi:10.1063/1.91445   DOI
27 Pratt, R., Bauer, K., and Weber, M., 2003, Crosshole waveform tomography velocity and attenuation images of arctic gas hydrates: 73rd SEG Annual Meeting, Extended Abstracts, 22, 2255-2258.
28 Matsushima, J., 2005,, Attenuation measurements from sonic waveform logs in methane hydrate-bearing sediments at the Nankai Trough exploratory well off Tokai, central Japan: Geophysical Research Letters, 32, L03306. (Correction): Geophysical Research Letters, 33, L02305. doi:10.1029/ 2005GL024466
29 Lee, S., Cornillon, P., and Kim, Y., 2002, Spatial investigation of the nonfrozen water distribution in frozen foods using NMR SPRITE: Journal of Food Science, 67, 2251-2255. doi:10.1111/j.1365-2621. 2002.tb09536.x   DOI   ScienceOn
30 Lee, S., Pyrak-Nolte, L. J., Cornillon, P., and Campanella, O., 2004, Characterization of frozen orange juice by ultrasound and wavelet analysis: Journal of the Science of Food and Agriculture, 84, 405-410. doi:10.1002/jsfa.1558   DOI   ScienceOn
31 Johnston, D. H., Toksöz, M. N., and Timur, A., 1979, Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms: Geophysics, 44, 691-711. doi:10.1190/1.1440970   DOI   ScienceOn
32 Lee, M. W., 2006, Is amplitude loss of sonic waveforms due to intrinsic attenuation or source coupling to the medium? Scientific Investigations Report 2006-5120, 13 pp., U.S. Geological Survey, Reston, Virginia.
33 Helgerud, M., Dvorkin, J., Nur, A., Sakai, A., and Collett, T., 1999, Elasticwave velocity in marine sediments with gas hydrates: effective medium modelling: Geophysical Research Letters, 26, 2021-2024. doi:10.1029/ 1999GL900421   DOI
34 Johnson, D. L., Koplik, J., and Dashen, R., 1987, Theory of dynamic permeability and tortuosity in fluid-saturated porous media: Journal of Fluid Mechanics, 176, 379-402. doi:10.1017/S0022112087000727   DOI
35 Korenaga, J., Holbrook,W.S., Singh, S. C., and Minshull, T. A., 1997, Natural gas hydrates on the Southeast U.S. margin: Constraints from fullwaveform and travel time inversion of wide-angle seismic data: Journal of Geophysical Research, 102, 15345-15365. doi:10.1029/ 97JB00725   DOI
36 De Gennes, P. G., 1976, On a relation between percolation theory and the elasticity of gels: Journal de Physique Lettres, 37, 1-2. doi:10.1051/ jphyslet:019760037010100   DOI
37 Hackert, C. L., and Parra, J. O., 2003, Estimating scattering attenuation from vugs or karsts: Geophysics, 68, 1182-1188. doi:10.1190/1.1598111   DOI   ScienceOn
38 Gao, L., Poirier, J., and Aki, K., 1993, Attenuation due to partial melting: an experimental study on a model system, using the lab coda method: Journal of Geophysical Research, 98, 1853-1860. doi:10.1029/ 92JB02296   DOI
39 Carman, P. C., 1937, Fluid flow through a granular bed: Transactions of the Institution of Chemical Engineers, 15, 150-166.
40 Carr, H. Y., and Purcell, E. M., 1954, Effects of diffusion on free precession in nuclear magnetic resonance experiments: Physical Review, 94, 630-638. doi:10.1103/PhysRev.94.630   DOI
41 Stoll, R. D., 1977, Acoustic waves in ocean sediments: Geophysics, 42, 715-725. doi:10.1190/1.1440741   DOI   ScienceOn
42 Callaghan, P. T., Dykstra, R., Eccles, C. D., Haskell, T. G., and Seymour, J. D., 1999, A nuclear magnetic resonance study of Antarctic sea ice brine diffusivity: Cold Regions Science and Technology, 29, 153-171. doi:10.1016/S0165-232X(99)00024-5   DOI   ScienceOn
43 Burridge, R., and Keller, J. B., 1981, Poroelasticity equations derived from microstructure: The Journal of the Acoustical Society of America, 70, 1140-1146. doi:10.1121/1.386945   DOI   ScienceOn
44 Carcione, J. M., Campanella, O. H., and Santos, J. E., 2007, A poroelastic model for wave propagation in partially frozen orange juice: Journal of Food Engineering, 80, 11-17. doi:10.1016/j.jfoodeng.2006.04.044   DOI   ScienceOn
45 Carcione, J. M., and Seriani, G., 2001, Wave simulation in frozen porous media: Journal of Computational Physics, 170, 676-695. doi:10.1006/ jcph.2001.6756   DOI   ScienceOn
46 Berryman, J. G., 1980, Confirmation of Biot's Theory: Applied Physics Letters, 37, 382-384. doi:10.1063/1.91951   DOI
47 Biot, M. A., 1956, Theory of propagation of elastic waves in a fluid saturated porous solid, I. Low-Frequency Range and II. High-Frequency range: The Journal of the Acoustical Society of America, 28, 168-191. doi:10.1121/ 1.1908239   DOI
48 Tada, R., and Kimura, M., 1999, Experimental study of the elastic wave propagation in composite porous media with glass beads and ice constituents – comparison with numerical study: Butsuri Tansa, 52, 323-335. [in Japanese with English abstract]
49 Sloan, E. D., 1990, Clathrate Hydrates of Natural Gases: Marcel Dekker.