• Title/Summary/Keyword: 산란장 해석

Search Result 57, Processing Time 0.028 seconds

A Study on Scattered Field of Ultrasonic Wave Using the Boundary Element Method (경계요소법을 이용한 초음파 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.130-137
    • /
    • 2000
  • Ultrasonic technique which is one of the most common and reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal scattered from internal defects. Therefore, the numerical analysis of the ultrasonic scattered field is absolutely necessary for the accurate and quantitative estimation of internal defects. Various modeling techniques now play an important role in nondestructive evaluation and have been employed to solve elastic wave scattering problems. Because the elastodynamic boundary element method is useful to analyze the scattered field in infinite media. it has been used to calculate the ultrasonic wavefields scattered from internal defects. In this study, a review of the boundary element method used for elastic wave scattering problems is presented and, as examples of the boundary element method, the scattered fields due to a circular cavity subjected to incident SH-wave and due to a surface-breaking crack subjected to incident Rayleigh wave are illustrated.

  • PDF

An Analysis of Electromagnetic Field Scattering for the Dielectric Cylinders (유전체주의 전자장 산란 해석)

  • 박동희;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.2
    • /
    • pp.181-186
    • /
    • 1992
  • The scattering property of TMz illuminated perfectly conducting and dielectric cylinders of arbitrary cross section are analyzed by the boundary element techniques. The boundary element equations are formulated via Maxwell’s equations, weighted residual or Green’s theorem, and the boundary conditions. The unknown surface fields on the boundaries are then calculated by the boundary element integral equations. Once the surface fields are found, the scattered fields in from a perfectly conducting circular and elliptic cylinders, a dielectric circular and elliptic cylinders are numerically analyzed. A general computer program has been developed using the quadratic elements(higher order boundary elements) and the Gaussian quadrature.

  • PDF

FDTD Simulations of Electromagnetic Resonance Scattering for the Extraction of the Dielectric Constant (유전율 추출을 위한 공진산란의 FDTD 시뮬레이션)

  • 전상봉;정용화;안창희
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.113-117
    • /
    • 2002
  • 최근 산란함수의 곱셈전개에 근거를 둔 새로운 공명 산란이론이 개발되어 공명성분의 크기와 위상을 수치적으로 정확하게 얻게 해 주었다. 또한 음파분야에서는 공명스펙트럼을 얼기 위해 MIIR 라는 실험방법을 개발되어 사용하여 왔다. 본 논문에서는 원통형 유전체에 의한 산란장 문제에 공진 산란이론을 적용하여 공진 주파수를 얻고, MIIR 의 실험 모델에 수치 해석방법인 FDTD를 적용하여 이로부터 역으로 유전율 등에 관한 정보를 얻기 위한 산란장 스펙트럼을 예측하였다.

  • PDF

An Analytic Solution of a Circular Aperture Antenna with a Feed Transition (급전부에 전이 구조가 있는 원형 개구면 안테나의 엄밀한 해석 방법)

  • Lee Haeng-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.982-988
    • /
    • 2005
  • An analytic solution of circular aperture antenna with a feed transition is presented using a hybrid method of generalized scattering matrices and integral transform. The method can give an analytic solution to antennas with integrated filters or mode converters, etc. Scattering matrices and integral transform techniques are combined to accommodate discontinuities connected between an aperture and a feed waveguide, and radiated field from the aperture. The method gives radiation fields as well as return losses of the antenna.

The Analysis of Electromagnetic Scattering of Perfectly Conducting Polygonal Cylinders Using Extrapolation Integral Method (외삽 근사법을 이용한 완전 도체 다각주의 전자파 산란 해석)

  • 이상회;정구철;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.6
    • /
    • pp.571-579
    • /
    • 1987
  • The integral equations used in electromagnetic fields theory can be used for scattering problems. We can obtain various characteristics of scatterer. Ie, power pattern, scattered field, by finding current distribution on the scatterer. In this paper, current distribution on polygonal cylinder is obtained using integral equations in 2 dimension. For numerical aualysis, the moment method is used with pulse function as a basis function and integral equation is used with extrapolation method, which saves cpu time.

  • PDF

Background coefficients of the scattering from dielectric cylinder and cavity in the Resonance scattering theory (원통형 유전체와 공동에 대한 전자기파 공진산란이론의 배경성분)

  • Jung, Yong-Hwa;Jeon, Sang-Bong;Ahn, Chang-Hoi;Choi, Myoung-Seon
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.2 no.1
    • /
    • pp.63-70
    • /
    • 2003
  • Resonance Scattering Theory (RST) offers us an interpretation of the resonance phenomena in the scattered field. It is shown 1.hat the scattered field consists of the resonance and background components in the RST. The suitable background is necessary in order to obtain the resonance component. In this study, the background coefficients are investigated to obtain resonance components from electromagnetic scattering field for cylindrical object with different permittivities. We show some valid results valid for two models; cavity and dielectric cylinder.

  • PDF

Finite Element Analysis of Ultrasonic Wave Propagation and Scattering (초음파 전파 및 산란 문제의 유한요소 해석)

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Park, Yun-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.411-421
    • /
    • 2002
  • The accurate analysis of ultrasonic wave propagation and scattering plays an important role in many aspects of nondestructive evaluation. A numerical analysis makes it possible to perform parametric studies, and in this way the probability of detection and reliability of test results can be improved. In this study, a finite element method was developed for the analysis of ultrasonic fields, the accuracy of results was checked by solving several representative problems. The size of element and the integral time step, which are the critical components for the convergence of numerical results, were determined in a commercial finite element code. Several propagation and scattering problems in 2-D isotropic and anisotropic materials were solved and their results were compared with known analytical or experimental results.

A Study on Hybrid Finite Element Method for Solving Electromagnetic Wave Scattering (전자파 산란문제를 해결하기 위한 혼합 유한요소법에 관한 연구)

  • 박동희;강찬석;안정수
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 1993
  • A Hybrid Finite Element Method(HFEM) is applied to solve the electrormagnetic scattering from multi-layered dielectric cylinders. An unbounde region is divided into local boundary regions where a practical differential equation solution is obtained, with the remaining unbounded region represented by a boundary integral equation. If sources, media inhomogeneities, and anisotropies are local, a surgace may be defined to enclose them. Therefore the integral region so defined is bounded, and differential techniques may be used there. Also, in the re- maining unbounded region a boundary integral equation may be formulated using only a simple free - space green's function. Therefore, The local boundary is represented by a boundary - value problem with boundary conditions and solved by the finite element method. The advantage of the proposed method is simple and efficient in the work of electromagnetic scattering. The validity of the results have been verified by comparing results of other method(boundary element method). Examples has been presented to calculate the scattered fields of lossy dielectric cylinders of arbitray cross section.

  • PDF

The Study on Scattered Far-Field Analysis of Ultrasonic SH-Wave Using Boundary Element Method (경계요소법을 이용한 SH형 초음파 원거리 산란장 해석에 관한 연구)

  • Lee, Joon-Hyun;Lee, Seo-Il
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.5
    • /
    • pp.333-339
    • /
    • 1999
  • It is well recognized that ultrasonic technique is one of the most common and reliable nondestructive evaluation techniques for quantitative estimation of defects in structures. For the quantitative and accurate estimation of internal defects. the characteristics of scattered ultrasonic wavefields must be understood. In this study. the scattered near-field and far-field due to a circular cavity embedded in infinite media subjected to incident SH-waves were calculated by the boundary element method. The frequency response of the scattered ultrasonic far-field was transformed into the time-domain signal by obtaining its inverse Fourier transform. It was found that the amplitude of time-domain signal decreases and its time delay increases as the distance between the detecting point of ultrasonic scattered field and the center of internal cavity increases.

  • PDF