• Title/Summary/Keyword: 산란영상

Search Result 427, Processing Time 0.028 seconds

A Study of Scattered Radiation Effect on Digital Radiography Imaging System (디지털 방사선영상 시스템에서 산란선이 영상 품질에 미치는 영향)

  • Baek, Cheol-Ha
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Scattered radiation is inherent phenomenon of x-ray, which occurs to the subject (or patient). Therefore it cannot be avoidable but also interacts as serious noise factor because the only meaningful information on x-ray radiography is primary x-ray photons. The purpose of this study was to quantify scattered radiation for various shooting parameters and to verify the effect of anti-scatter grid. We employed beam stopper method to characterize scatter to primary ratio. To evaluate effect on the projection images calculated contrast to noise ratio of given shooting parameters. From the experiments, we identified the scattered radiation increases in thicker patient and smaller air gap. Moreover, scattered radiation degraded contrast to noise ratio of the projection images. We find out that the anti-scatter grid rejected scattered radiation effectively, however there were not fewer than 100% of scatter to primary ratio in some shooting parameters. The results demonstrate that the scattered radiation was serious problem of medical x-ray system, we confirmed that the scattered radiation was not considerable factor of dig ital radiog raphy.

Study on the Experimental Identification of Surface Roughness Using Laser Scattering Image (레이저 산란 영상을 이용한 표면거칠기의 실험적 규명에 관한 연구)

  • Hong, Yeon-Ki;Kim, Gyung-Bum
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • In this paper, surface roughness has been experimentally identified using laser scattering images. The parameters and optical deflected rays of laser scattering are investigated on laser scattering system, and then their optimum parameters on grinding surfaces are selected using design of experiment. The application of the optimum parameters results in featured laser scattering images, in which the mean of vertical scattering distributions is regarded as a feature. It is shown that the feature of laser scattering distributions is linearly increased according to grinding surface roughness and so the information can be used as important factor for the measurement and evaluation of various surface roughness. In the future, the performance of the proposed laser scattering method will be evaluated using AFM.

Compton Scatter Distribution Function in Non-uniform Attenuation Media in SPECT (SPECT 영상에서 불균등 감약물질의 콤프톤 산란 분포함수)

  • Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 1991
  • SPECT 영상에서 콤프톤 산란 광자는 공간분해능의 감소와 그 양을 측정하는데 있어 정확성과 정밀성을 감소시킨다. 이와같은 콤프톤 산란의 영향을 감소시키기 위하여 사용하는 대부분의 보정방법은 선원의 위치로부터 거리의 단일지수함수로 대칭인 산란분포함수를 고려하게 된다. 본 연구는 균등 및 불균등 산란에 대한 산란분포함수를 얻기 위하여 보다 현실적인 접근방법을 시도하였다. 산란 및 비산란광자의 공간분포와 에너지분포를 얻기 위하여 뼈, 폐, 물의 균등 및 불균등 분포로 된 원통형의 팬톰 속에 $^{99m}Tc$의 선선원 및 점선원을 놓고 Monte Carlo Simulation을 하였으며, 깊이의 함수, media의 접촉영역으로부터 선원거리 및 산란체의 밀도의 변화로 표현한 산란분포함수(SDF)를 얻었다. 산란분포함수는 균등한 뼈, 폐, 물에서는 선원위치로부터 거리의 단일지수함수(single exponential functions)로 대칭으로 나타났으며, 두 물체의 조합에서는 2중지수함수(dual exponential functions)로 비대칭으로 나타났다. 산란분율은 20% window photopeak에서 총 계수의 8%에서 53%까지 다양한 변화가 있었으며, 지수함수의 기울기는 $0.1{\sim}0.9\;cm^{-1}$의 범위로 나타났다. 불균등 산란체에서 얻은 산란분포함수는 SPECT 영상에 있어 콤프톤 산란의 감소에 대한 보다 정확한 보정방법의 개발에 필요한 정보를 제공할 것이다.

  • PDF

A study on Modeling Method to Extract some Information for Scatterer Points of a Target (표적 산란점 정보 추출을 위한 모델링 기법 연구)

  • Nam, Dukjin;Hwang, Inseong
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.4
    • /
    • pp.21-29
    • /
    • 2021
  • Inverse synthetic aperture radar (ISAR) image is a powerful tool to show the major scattering regions (scatterer points) on the target. It is normally used to identify and classify targets. Finding information for the scatter points of ISAR image plays an important role in modeling the features of targets. In this paper, we propose a modeling method to extract some information about the scatterer points by minimizing approximating error. Here, the extracted information include not only the location of scatterer points but also some statistical data about the error of the their location. These extracted data can be used to implement the randomness of the location of the scatterer points. Furthermore, we reconstruct an image from the extracted data for scatterer points obtained by our proposed method. And we show that the reconstructed ISAR image is well approximated to the original ISAR image in order to justify our proposed modeling method.

Development of Multi-channel Detector of X-ray Backscatter Imaging (후방산란 엑스선 영상획득을 위한 다채널 검출기 개발)

  • Lee, Jeonghee;Park, Jongwon;Choi, Yungchul;Lim, Chang Hwy;Lee, Sangheon;Park, Jaeheung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.245-247
    • /
    • 2022
  • Backscattered x-ray imaging is a technology capable of acquiring an image inside an irradiated object by measuring X-rays scattered from an object. For image acquisition, the system must include an X-ray generator and a detection system for measuring scattered x-rays. The imaging device must acquire a real-time signal at sampling intervals for x-rays generated by passing through a high-speed rotating collimator, and for this purpose, a high-speed signal acquisition device is required. We developed a high-speed multi-channel signal acquisition device for converting and transmitting signals generated by the sensor unit composed of a large-area plastic scintillator and a photomultiplier tube. The developed detector is a system capable of acquiring signals at intervals of at least 15u seconds and converting and transmitting signals of up to 6 channels. And a system includes remote control functions such as high voltage, signal gain, and low level discrimination for individual calibration of each sensor. Currently, we are conducting an application test for image acquisition under various conditions.

  • PDF

Performance Improvement for 2-D Scattering Center Extraction and ISAR Image Formation for a Target in Radar Target Recognition (레이다 표적 인식에서 표적에 대한 2차원 산란점 추출 및 ISAR 영상 형성에 대한 성능 개선)

  • Shin, Seung-Yong;Lim, Ho;Myung, Noh-Hoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.984-996
    • /
    • 2007
  • This paper presents techniques of 2-D scattering center extraction and 2-B ISAR(Inverse SAR) image formation for scattering wave which is scattered by a target. In general, 2-D IFFT is widely used to obtain 2-D scattering center and ISAR image of targets. But, this method has drawbacks, that is poor in a resolution aspect. To overcome these shortcomings with the FT(Fourier Transform)-based method, various techniques of high resolution signal processing were developed. In this paper, algorithms of 2-D scattering center extraction and ISAR image formation such as 2-D MEMP(Matrix Enhancement and Matrix Pencil), 2-D ESPRIT(Estimation of Signal Parameter via Rotational Invariance Techniques) are described. In order to show the performances of each algorithm, we use scattering wave of the ideal point scatterers and F-18 aircraft to estimate 2-D scattering center and abtain 2-D ISAR image.

The Study on Interpretation of the Scatter Degradation Factor using an additional Filter in a Medical Imaging System (의료 영상 시스템에서 부가 필터를 이용한 산란 열화 인자의 해석에 관한 연구)

  • Kang, Sang Sik;Kim, Kyo Tae;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.589-596
    • /
    • 2019
  • X-rays used for diagnosis have a continuous energy distribution. However, photons with low energy not only reduce image contrast, but also contribute to the patient's radiation exposure. Therefore, clinics currently use filters made of aluminum. Such filters are advantageous because they can reduce the exposure of the patient to radiation. However, they may have negative effects on imaging quality, as they lead to increases in the scattered dose. In this study, we investigated the effects of the scattered dose generated by an aluminum filter on medical image quality. We used the relative standard deviation and the scatter degradation factor as evaluation indices, as they can be used to quantitatively express the decrease in the degree of contrast in imaging. We verified that the scattered dose generated by the increase in the thickness of the aluminum filter causes degradation of the quality of medical images.

Preliminary Study of Performance Evaluation of a Dual-mode Compton Camera by Using Geant4 (Geant4 몬테칼로 전산모사 툴킷을 이용한 이중모드 컴프턴 카메라 최적화 설계 및 성능평가)

  • Park, Jin Hyung;Seo, Hee;Kim, Seoung Hoon;Kim, Young Soo;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.191-196
    • /
    • 2012
  • A double-scattering type Compton camera which is appropriate to imaging a high-energy gamma source has been developed for nuclear material surveillance at Hanyang University. The double-scattering type Compton camera can provide high imaging resolution; however, it has disadvantage of relatively low imaging sensitivity than existing single-scattering type Compton camera. In this study, we introduce a novel concept of a dual-mode Compton camera which incorporates two different types of Compton camera, i.e., single- and double-scattering type. The dual-mode Compton camera can operate high-resolution mode and high-sensitivity mode in a single system. To maximize its performance, the geometrical configuration was optimized by using Geant4 Monte Carlo simulation toolkit. In terms of imaging sensitivity, high-sensitivity mode had higher sensitivity than high-resolution mode up to 100 times while high imaging resolution of the double-scattering Compton camera was maintained.

M-shaped Change of Radar Backscattering Coefficient on a Drying Tidal Mudflat Observed by Radarsat-1 SAR Images and a Laboratory Scatterometer Experiment (Radarsat-1 SAR 영상과 산란계 실내 실험을 통해 관찰된 조간대 갯벌 건조시 레이더 후방산란계수의 M형 변화)

  • Chae Hee-Sam;Lee Hoon-Yol;Cho Seong-Jun;Park No-Wook
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.75-78
    • /
    • 2006
  • 이 연구에서는 Radarsat-1 SAR 영상과 조위자료, 증발자료 및 다편광 산란계를 이용한 개펄 건조 실내실험 등을 통하여 해수면 위로 노출된 자연갯벌이 증발과 구조적 변화를 일으킬 때 레이더 후방산란계수의 변화를 분석하였다. 개펄 건조 실내실험 결과, 후방산란계수가 증발시간에 따라 단순한 증가나 감소를 보이지 않았으며 갯벌의 구조와 배수, 증발, 건조 등에 의해 보다 복잡한 M자 형태(증가-감소-증가-감소)의 변화를 나타내었다. 이러한 M형의 변화는 증발시간에 따른 Radarsat-1 SAR 15개 영상의 후방산란계수 변화 양상에서도 나타나는 것으로 확인되었다.

  • PDF

An Experimental Method for the Scatter Correction of MV Images Using Scatter to Primary Ratios (SPRs) (산란선 대 일차선비(SPR)를 이용한 MV 영상의 산란 보정을 위한 실험적 방법)

  • Jeon, Hosang;Park, Dahl;Lee, Jayeong;Nam, Jiho;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Lee, Ju Hye;Kim, Dongwon
    • Progress in Medical Physics
    • /
    • v.25 no.3
    • /
    • pp.143-150
    • /
    • 2014
  • In general radiotherapy, mega-voltage (MV) x-ray images are widely used as the unique method to verify radio-therapeutic fields. But, the image quality of MV images is much lower than that of kilo-voltage x-ray images due to scatter interactions. Since 1990s, studies for the scatter correction have performed with digital-based MV imaging systems. In this study, a novel method for the scatter correction is suggested using scatter to primary ratio (SPR), instead of conventional methods such as digital image processing or scatter kernel calculations. We measured two MV images with and without a solid water phantom describing a patient body with given imaging conditions, and calculated un-attenuated ratios. Then, we obtained SPR distributions for the scatter correction. For experimental validation, a line-pair (LP) phantom using several Al bars and a clinical pelvis MV image was used. As the result, scatter signals of the LP phantom image were successfully reduced so that original density distribution of the phantom was restored. Moreover, image contrast values increased after SPR correction at all ROIs of the clinical image. The mean value of increases was 48%. The SPR correction method suggested in this study has high reliability because it is based on actually measured data. Also, this method can be easily adopted in clinics without additional cost. We expected that the SPR correction can be an effective method to improve the quality of MV image guided radiotherapy.