• Title/Summary/Keyword: 삭마

Search Result 111, Processing Time 0.027 seconds

A Study on Surface Properties of Ablative Materials from 0.4MW Arc-Heated Wind Tunnel Test (0.4MW 아크 가열 풍동 시험을 통한 삭마 재료의 표면 특성 연구)

  • Kim, Nam Jo;Oh, Philyong;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1048-1053
    • /
    • 2015
  • Ablative materials in a thermal protection system for atmospheric re-entry suffers from the most severe heat fluxes and temperatures, which induces surface recession in the thickness direction. In this paper, a 0.4MW arc-heated wind tunnel is operated to test for ablative materials, and a non-contact three-dimensional surface measuring system is used to evaluate the different surface characteristics of them. In particular, by postprocessing the three-dimensional image data, the surface roughness and recession of ablative materials can be calculated before and after the wind tunnel test. Moreover, the surface properties are analyzed quantitatively by comparing volume and mass losses of the test specimens.

Computational Modeling and Analysis of Ablative Composites Using Micro-tomographic Images (미세 단층 영상을 이용한 삭마 복합재료의 전산 모델링 및 해석)

  • Cheon, Jae Hee;Roh, Kyung Uk;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.9
    • /
    • pp.642-648
    • /
    • 2019
  • In this study, Image-based computational analysis using the developed models was performed to predict the degradation of effective properties by ablation. The ablation tests of carbon/phenolic composites were performed using a 0.4 MW arc-heated wind tunnel. The carbon/phenolic composite samples were scanned using the micro-computed tomography (Micro-CT) to analyze the ablation characteristics according to a duration time of the ablation test. By calibrating the scanned images, computational models were developed that reflect the actual microstructure of the ablation composites. Also, nine computational models that reflect the actual pore shape were developed using the created cross-sectional images. Image-based computational analysis using the developed models was performed to predict the degradation of effective properties by ablation and the decrease of effective properties was confirmed with increase of porosity.

A performance analysis on supersonic nozzle by ablated shape of thermal protectors (내열 재료별 삭마형상에 따른 초음속 노즐 성능 분석)

  • Lee, Ji-Hyung;Ham, Hee-Cheol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.371-376
    • /
    • 2007
  • Pan and rayon materials, two types of carbon fabric/phenolics composites, are using as thermal protectors for SRM's nozzle. After burning tests, It was required to analyze the performance of nozzles by ablated shape because ablative patterns were different from each other. For studying of performance on supersonic nozzles that have ablated shape, 1-dimensional analysis and numerical analysis were performed and results were presented in this paper. As the results of this study, in case of the thrust loss, rayon was predicted about 0.53% higher than pan and in case of total impulse loss, rayon was predicted about 0.4% higher than pan.

  • PDF

Study on the ablation structures of Carbon/Phenolic composites used PAN based carbon fiber (PAN계 탄소섬유를 이용한 Carbon/Phenolic 복합재의 삭마구조 특성 연구)

  • Im, Yeon-Su;Kim, Dong-Gyu;Park, In-Seo;Yun, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.4 no.3
    • /
    • pp.339-348
    • /
    • 1994
  • The study has been conducted to know ablation microstructures and characteristics in carbon /phenolic composites. Ablation properties depend on mole fraction of $H_2O$ and $C0_2$ gas which were produced by reaction between propellant and oxidizer. However, the results of this study shown that the ablation also depended on weaving structure, density of fabric, and tow size of carbon fiber. 3K 8HS fabric showed superior ablation resistance to others, 3K twill and 12K 8HS fabric structures.

  • PDF

Experimental Study on Nozzle Ablation in Liquid Rocket Engine (액체로켓의 노즐 삭마에 대한 실험적 연구)

  • Kim, J.W.;Park, H.H.;Kim, S.K.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.38-44
    • /
    • 2000
  • In general liquid rocket nozzles are protected from hot combustion gas by regenerative cooling techniques. But due to the complexity of the cooling system, it causes increase of system cost and frequently source of the system malfunction. Recently, instead of regenerative cooing, ablative material are used to protect combustion chamber wall and nozzle. To determine the nozzle material erosion rate and erosion shape, more than 500 hot fire test were performed by using 100 lb thrust experimental liquid rocket. Test variable were propellant feed sequence, injector, position of igniter and liquid oxygen supply temperature.

  • PDF

Thermal Shock and Erosion Properties of 4D Carbon/Carbon Composties (4방향 탄소/탄소 복합재의 열충격 및 삭마 특성)

  • Hong, Myeong-Ho;O, In-Seok;Choe, Don-Muk;Ju, Hyeok-Jong;Park, In-Seo
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.611-619
    • /
    • 1995
  • PAN계 탄소섬유와 페놀수지를 이용하여 rod를 인발성형 한 후, 다른 섬유분율을 갖는 두종류의 hexagonal type 4D 프리폼을 제작하였다. 석탄계 핏치를 가압함침 탄화공정을 통하여 함침한 후 탄화와 고온열처리를 하였다. 이와 같은 공정을 반복하여 고밀도화된 4D CRFC를 제조하였다. 열충결 시험 후 새로운 크랙이 생성되었을 뿐만 아니라 기존의 크랙이 확장되었으며 이와 같은 크랙들은 공기와의 접촉면을 제공하여 중량감소를 보였다. 공기 산화 저항성을 고온열처리 공정을 거친 것이 약 20% 우수하게 나타났다. 4D CFRC의 밀도와 섬유의 분율이 높을 수록 삭마 저항성이 커지고, 삭마량은 시간에 따라 선형적으로 증가하였으며 type II가 type I보다 삭마저항성이 우수하였다. 삭마 메카니즘을 관찰한 결과 1차적으 기질의탈리가 먼저 일어난 다음 섬유가 삭마되었다.

  • PDF

Survey on Laser Ablation Micro-thruster for Small Satellites (소형 인공위성을 위한 레이저 삭마 미소 추력기 개발 현황)

  • Park, Young Min;Lee, Bok Jik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.753-756
    • /
    • 2017
  • With the advancement of technology, miniaturization, integration, and weight reduction have become possible, and the existing medium and large satellites have been replaced by small satellites, and the need for a micro thruster has emerged. Laser ablation micro-thruster is a new type thruster using laser ablation. It is emerging as a new candidate in micro-thrusters with wide thrust range and low single impulse thrust. The objective of present study is to introduces the structure, propellant, and research trends of the laser ablation micro-thruster.

  • PDF

Prediction of the Mechanical Erosion Rate Decrement for Carbon-Composite Nozzle by using the Nano-Size Additive Aluminum Particle (나노 알루미늄 입자 첨가 추진제에 의한 탄소복합재 노즐의 기계적 삭마 감소 특성 예측)

  • Tarey, Prashant;Kim, Jaiho;Levitas, Valeny I.;Ha, Dongsung;Park, Jae Hyun;Yang, Heesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.42-53
    • /
    • 2015
  • In this study, the influence of Al particle size, as an additive for solid propellant, on the mechanical erosion of the carbon-composite nozzle was evaluated. A new model which can predict the size and distribution of the agglomerated reaction product($Al(l)/Al_2O_3(l)$) was established, and the size of agglomerate were calculated according to the various initial size of Al in the solid propellant. With predicted results of the model, subsequently, the characteristics of mechanical erosion on the carbon-composite nozzle was estimated using a commercial CFD software, STAR CCM+. The result shows that the smaller the initial Al particles are, in the solid propellant, the lower is the mechanical erosion rate of the composite nozzle wall, especially for the nano-size Al particle.

Thermomechanical Analysis of Composite Structures in Pyrolysis and Ablation Environments (열분해 및 삭마 환경의 복합재 구조물의 열기계적 연계 해석)

  • Choi, Youn Gyu;Kim, Sung Jun;Shin, Eui Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.597-604
    • /
    • 2013
  • A coupled thermomechanical analysis of composite structures in pyrolysis and ablation environments is performed. The pyrolysis and ablation models include the effects of mass loss, pore gas diffusion, endothermic reaction energy, surface recession, etc. The thermal and structural analysis interface is based upon a staggered coupling algorithm by using a commercial finite element code. The characteristics of the proposed method are investigated through numerical experiments with carbon/phenolic composites. The numerical studies are carried out to examine the surface recession rate by chemical and mechanical ablation. In addition, the effects of shrinkage or intumescence during the pyrolysis process are shown.

Measurements of Ablations on Nozzle Throats of KL-3 Engines Using Image Analysis (영상분석을 통한 KL-3 엔진 노즐목 삭마량 측정)

  • 김영한;고영성;박성진;류철성;강선일;오승협
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.1-7
    • /
    • 2003
  • In this research, it is intended to measure shape of the nozzle throat of the KL-3 engine, which is the main engine of the KSR-III rocket. For the purpose, an image-based method was invented to replace the 3D pointer, which is actually inaccessible to such large scale engines. As a result, our equipment showed satisfactory Performances. Analysing the results of experiments, we find that the pattern of ablation is determined by the spray pattern and that the process of thermal ablation phenomena can be categorized in three regimes - the first regime that the shape of nozzle throat is maintained and ablation is negligible, the second regime that saw-tooth form is developed and ablation is accelerated, and the third regime that the saw-tooth form is already established and the growth of ablation rate is reduced Also, we find that the ratio of area increase after 60 seconds combustion is +5.82% and conclude that the ratio is acceptable and satisfactory.