• Title/Summary/Keyword: 사판식 유압 피스톤 모터

Search Result 4, Processing Time 0.024 seconds

A Kinematic Analysis on the Connecting Rod Mechanism in Swash-plate-type Hydraulic Axial Piston Motor (사판식 유압 피스톤 모터 커넥팅 로드 기구의 운동해석)

  • 하정훈;김경호;함영복;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.621-625
    • /
    • 1997
  • Recently, wash plate type hydraulic axial piston motors are being in extensively used in the world, because of simple design, lightweight, effective cost. But the structural problem of swash plate type hydraulic axial piston motor is the limited angle of swash plate and lateral force having a undesirable effect in piston. To solve these problems. a connecting rod mechanism. which is commonly used in hent axis type motors, is considered to be applied the swash plate cype motor. In this paper, kinematic analysis is done on the connecting rod mechanism. A series of formula are derived and numerical calculations are done for a set of motor parameters.

  • PDF

Analysis of Performance Characteristics of Swash-Plate-Type Hydraulic Piston Motor (사판식 유압 피스톤모터의 성능특성 분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1441-1446
    • /
    • 2012
  • An axial-piston-type hydraulic motor involves friction and leakage losses at the sliding parts, contact loss at the mechanism assembly parts, volumetric loss caused by the pressure drop, housing oil churning loss and compressibility from the hydraulic oil pipe resistance, etc. the friction and volumetric loss at the hydrostatic bearing between the piston shoe and the swash plate rotating at high speed and having an oil film gap of 8-15 ${\mu}m$ strongly affects the total efficiency of the hydraulic motor. In this study, a variable swash-plate-type hydraulic piston motor operating under a maximum pressure of 35 MPa, maximum speed of 2,500 rpm, and displacement of 320 cc/rev is tested to verify the optimal ratio of the hydrostatic bearing which is closely related to the hydraulic motor performance.

A Kinematic Analysis on Piston Rod Mechanism in Swashplate Type Hydraulic Axial Piston Motor/Pump Using Constant Velocity Joint (등속조인트를 적용한 사판식 유압 모터/점프의 로드형 피스톤에 대한 운동해석)

  • Kim K.H.;Kim S.D.;Ham Y.B.;Lee J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, swash plate type hydraulic axial piston motors/pumps are being extensively used in the world, because of simple design, light weight and effective cost. Structural problem of the swash plate type motor/pump is that tilting angle of swash plate should be limited to relatively small value and lateral farce on pistons has an undesirable effect in reciprocating motion. To solve these problems, piston rod mechanism, which is commonly used in bent axis type motor/pump, is considered to be applied to the swash plate type motor/pump. In this paper, kinematic analysis was done on the piston rod mechanism. A series of formula were derived and numerical calculations were done for a set of motor parameters.

  • PDF

Characteristic Experiment of Swashplate Type Axial Piston Motor (I) (사판식 유압모터의 특성실험 (I))

  • Yum, Man-Oh;Yoon, Il-Ro
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.561-569
    • /
    • 2000
  • The purpose of this study is to construct a testing equipment with which several characteristics of the domestically developed swashplate type axial piston motor can be tested and to develop a software with which the data from experiment can be stored and can be applied. The results of the study are as follows; 1) The leakage flow and the torque of the motor being stopped is propotional to supply pressure and their relation can be showed by linear equations. 2) The motor movement is not smooth below 50 rpm but it moves smoothly up 170 rpm. 3) When the motor starts or stops, the pressure rise ratio effects decisively to the max. torque.