Communications for Statistical Applications and Methods
/
제3권3호
/
pp.1-9
/
1996
본 논문에서는 일반화 회귀모형의 회귀모수${\beta}$에 대한 사전정보의 형태에 따른 각 추정량들에 대하여 연구하였다. 먼저 사전정보가 ${\beta}$에 대한 사전분포로 주어지는 경우에 해당하는 베이지안 회귀추정량을 제시하였고, 다른 하나는 ${\beta}$에 대한 사전정보모형으로 선형회귀모형식이 주어진 경우의 일반화 혼합회귀추정량에 대하여 연구하였다. 두가지 경우로부터 얻어진 각 추정량의 정도를 알아보기 위하여 각 추정량의 공분산행렬을 이 용하여 서로 비교하여 보았다. 각 추정량의 분산비들을 이용하여 일반적으로 일반화 혼합회귀추정량이 베이지안 회귀추정량들보다 비교적 작은 분산값을 가진다는 결론을 얻었다.
본 연구에서는 경제 뉴스로부터 서술어 중심의 감성 사전을 구축하고, 하루 동안에 배포된 뉴스를 이용해 전일 종가 대비 당일 종가의 등락을 예측하는 모델을 제안한다. 기존의 주식 도메인 관련 감성 사전을 구축하는 방식은 주가 등락에 관련된 명사를 중심으로 사전을 구축하는 방식이나 대부분의 명사는 극성 값이 중립인 경우가 많아 극성 값을 추정하기 힘들다는 문제점이 있다. 본 연구에서는 극성 값이 잘 표현되는 서술어 중심의 감성사전을 구축하고 극성 값을 자동 추출하여 주가의 등락을 예측한다. 실험 결과 기존 감성 사전을 통한 주가 예측 방법에 비하여 본 연구에서 제안하는 서술어 중심의 감성 사전을 통한 주가 예측 정확도가 높게 나타났다.
Journal of the Korean Data and Information Science Society
/
제24권4호
/
pp.755-762
/
2013
본 논문은 NHPP 소프트웨어 신뢰성모형에서 모수추정과 고장시간에 대한 예측을 다루고자 한다. 소프트웨어 신뢰성모형 Goel-Okumoto모형에서 평균값 함수에 대한 최우추정과 경험적 사전분포를 가정한 공액사전분포에서 베이지안 추정을 다루었다. 실제 자료에서 두 가지 추정법에 의한 모수 추정값을 제공하였으며, 모형의 적합성을 판정하고, 고장수에 대한 예측값을 비교하였다.
Tobin (1958)에 의해 처음 소개된 절단 회귀모형에서 베이지안 추정은 최대가능도 추정보다 실제값에 가까운 것으로 알려져 있으나 베이지안 방법론이 구간추정 문제에 있어서도 성공적으로 작동할 수 있을 지에 대해서는 알려진 바가 없다. 일반적으로 베이지안 방법론에서 사전분포는 분석자의 사전정보를 반영하기 때문에 주관적인 분석이 될 수 밖에 없는데, 이렇게 주관적인 분석에서는 빈도학파들이 요구하는 기준을 따르기 어렵다. 그러나 무정보사전분포는 때때로 빈도학파적 특성을 갖는 베이지안 추론을 가능하게 한다. 본 연구에서는 절단 회귀모형에서 무정보사전분포에 의한 베이지안 신뢰구간의 빈도학파적 특성을 살펴보고 최대가능도 추정 신뢰구간과 포함확률을 비교한다. 이를 통해 최대가능도 추정의 표준오차가 과소 추정되고 있음 밝힌다.
본 연구는 표면 파라미터 추정시 고려하는 주요 인자별로 각 조정모델들을 분류하고 그들의 추정정확도를 사전분석함으로써 이들 모델링 인자들이 각 대상파라미터의 추정에 주는 영향을 정량적으로 분석하였다. 현재 지표면형상에 대한 정보를 취득하기 위하여 라이다영상, 항공영상, SAR영상 등 다양한 자료가 활용되고 있고, 이들로부터 지표면 형상을 정량적으로 분석하기 위해서는 임의지점 주위의 관측값들을 이용하여 해당 지점의 형상을 구체적으로 파악하게 된다. 이러한 형상정보는 관측값 범위지정, 가중치방식, 그리고 수학적모델링 등 여러 인자들을 선정하여 산정할 수 있지만, 각 선정인자에 따라 표면의 형상정보는 다르게 산정되고 또한 그 정확도도 상이하게 된다. 따라서, 본 연구에서는 표면의 형상정보추출시 조정계산 인자들 따른 이러한 정확도를 비교함으로써 인자별 추정 정확도 변화 경향에 대한 진단을 실시하였다. 본 연구에서는 표면형상정보로 표고, 경사, 곡면의 2차계수를 대상으로 하고, 수학적함수, 커널크기, 가중유형별로 조정계산모델들을 구성하여 사전통계량을 계산하였고, 이에 따라 전통계량 변화를 비교 분석함으로써, 각 조정모델의 추정성능을 조정계산인자에 따라 정량적으로 비교분석하였다.
본 연구의 목적은 파손과 보수비에 대한 미정보 사전분포와 공액 사전분포의 제곱오차 손실 함수 하에서 Gaver 와 Maxumder(1967) 에 의하여 제기된 두 개의 상태과정 즉 파손과 보수과정에 있어서 보수할 수 있는 성분에 대한 유용도를 어떤 베이지안으로서 실제의 값에 가까운 점 추정치를 구할 수 있는 수학적 모델을 만드는데 목적을 두며 앞으로 이를 선박기기 및 항해기기등의 보수정비에 관한 운용등에 적용할 수 있으리라 사료된다.
Communications for Statistical Applications and Methods
/
제5권3호
/
pp.623-632
/
1998
이원혼합모형에서 고정효과의 추정가능한 함수에 대한 신뢰구간을 구하는 경우에 어떤 분산성분추정량을 선택하는 것이 가장 바람직한가를 모의실험을 통하여 살펴본다 혼합모형에서는 t-분포와 일반화최소제곱추정량을 사용하여 신뢰구간을 구할 수 있는데, 일반적으로 분산성분을 알 수 없기 때문에 분산성분을 반드시 추정하여야만 한다. 이 경우 분산성분의 추정량으로 가장 많이 사용되는 추정량들인 Henderson의 방법 III 추정량, 사전추측값이 1인 MINQUE 추정량, MLE(최우추정량), REMLE(제한최우추정량)를 이용하여 분산행렬을 추정하고, 신뢰구간의 포함범위확률과 평균길이를 모의실험을 통하여 살펴본다. 모의실험의 결과는 4가지 추정량 모두 비슷한 신뢰구간의 포함범위확률과 평균길이를 갖는 것으로 판명되었다.
본고(本稿)는 Sims가 개발한 방법을 이용하여 우리나라와 같이 경제구조(經濟構造)가 급히 변하는 상황에서의 경제예측(經濟豫測)의 정확도(正確度)를 제고하고자 하는 시도의 일환이다. 본고(本稿)는 예측자의 사전신뢰(事前信賴)를 이용하여 계수의 값에 대하여 사전제약(事前制約)을 부과(賦課)하고 시간변동(時間變動)을 허용하는 변동계수(變動係數)벡타자귀(自歸)(TBVAR)모형(模型)의 추정방법뿐만 아니라 사전제약(事前制約)의 모수(母數)를 선택하는 방법과 오차(誤差)의 분산(分散)이 자기회귀(自己回歸)할 경우의 대처방법 등 예측(豫測)의 정확도(正確度)를 제고시키는 데 실제 사용되는 방법을 설명하고, 6변수모형(變數模型)을 이용하여 TBVAR 모델의 정확도(正確度)를 타(他) 모델과 비교한다. 정부건설(政府建設), 총통화(總通貨), 사채시장이자율(社債市場利子率), 민간건설(民間建設), 실질(實質)GNP 및 소비자(消費者) 물가지수(物價指數) 등 6변수(變數)에 대한 예측의 정확도를 "타일 U"값을 기준으로 비교할 때 TBVAR은 시간변동(時間變動)을 고려하지 않고 사전제약(事前制約)만 적용한 BVAR이나 사전제약(事前制約)도 적용하지 않은 VAR보다 대부분의 변수의 예측에 있어 더 정확하며 민간건설(民間建設)을 제외하고는 OLS보다 예측오차(豫測誤差)가 작게 나타난다.
본 연구는 기대 교통사고건수 추정을 위해 사용되는 SPF의 이질적 분산계수의 유의성이 이질적 사전분포에 직접적인 영향을 받는다는 가설을 검증하고, 이질적 사전분포에 대한 모형 오설정이 교통 안전개선 사업의 평가결과에 주는 영향의 특성을 분석하기 위해 수행되었다. 구체적으로 본 연구에서는 이질적 분산계수의 유의성과 이질적 사전분포의 연관성을 검증하기 위해 모의실험을 통해 이질적 사전분포를 발생시킨 후 이를 NB모형과 HNB모형을 이용하여 SPF를 추정하여 이질적 과분산계수가 SPF의 평균함수 및 분산함수에 주는 영향을 분석하였다. 또한 추정된 계수추정치를 이용한 사전분포의 초모수 추정치의 오차특성과 이질적 과분산계수를 고려하지 않았을 경우 발생하는 교통사고감소계수(CRF)의 오차 부호와 크기를 상세 분석하여 제시하였다. 모의실험 자료 분석결과 이질적 분산계수의 오추정은 포아송 사전분포의 평균에는 큰 영향을 주지 않으나 분산의 크기를 변화시켜 궁극적으로는 기대교통사고건수의 추정량인 사후평균의 값에 오차를 발생시킬 수 있으며, 구체적으로 이질적 분산함수를 NB모형으로 오설정할 경우 CRF의 값은 참값에 비해 최대 120%의 오차를 발생시키는 것으로 나타났다.
Communications for Statistical Applications and Methods
/
제2권2호
/
pp.74-84
/
1995
혼합이항모형은 생물학, 혹은 심리학분야에서 많이 다루는 모형이다. 이 혼합모형에서 진단자간의 일치도를 나타내는 k 는 이항모형에 혼합되어지는 사전분포 $\xi$(p)에 따라 다른 형태를 갖는다. 그래서 $\xi$(p)에 의존적이지 않은 모수를 정의 하고, 이에 대한 실증적 추정값 $\hat k$을 일반혼합이항모형에서 k에 대한 추정값으로 사용하였다. 매개모수의 영향을 줄이기 위하여 모수를 직교화하였다. 베타이항모형으로 부터 표본을 추출하여 구한 최우추정값 $\hat k_m$과 이 표본을 이용하여 구한 $\hat k$을 비교하여 본 결과 k와 $\lambda$가 직교하는 영역에서 $\hat k$이 $\hat k_m$보다 편기가 작아지는 경우가 있을 만큼 $\hat k$이 효과적이었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.