• Title/Summary/Keyword: 사용자 성향 학습

Search Result 44, Processing Time 0.026 seconds

Personalized Mobile Junk Message Filtering System (사용자 맞춤형 스팸 문자 필터링 시스템)

  • Lee, Seung-Jae;Choi, Deok-Jai
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.122-135
    • /
    • 2011
  • Mobile spam message is a harmful factor which makes receivers to be annoyed and leads to unnecessary social cost. Unwanted junk messages flowing to a smart phone ruin main purpose of the smart work system to enhance the productivity, so we need to study on this area. In this paper, we proposed a novel spam filter on the smartphone in order to reduce computing process and improve the accuracy rate by feedback of error results to a training sample set. As the spam classifier operates on the smartphone independently with training on only user's received data, it could reflect user preference. The authorized personal computer takes on heavy works, such as preprocessing, feature selecting and training process, and the smartphone takes on light works to block junk messages. Experimental results showed reasonable accuracy rate of over 95%, and we found that the application occupied constant computing resources while running on the phone.

A Model to Infer Users' Behavior Patterns for Personalized Recommendation Service based Context-Awareness (컨텍스트 인식 기반 개인화 추천 서비스를 위한 사용자 행동패턴 추론 모델)

  • Seo, Hyo-Seok;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.10 no.2
    • /
    • pp.293-297
    • /
    • 2012
  • In order to provide with personalized recommendation service in context-awareness environment, the collected context data should be analyzed fast and the objective of user should be able to inferred effectively. But, the context collected from the mobile devices is not suitable for applying the existing inference algorithms as they are due to the omission or uncertainty of information and the efficient algorithms are required for mobile environment. In this paper, the behavior pattern was classified using naive bayes classification for minimize the loss caused by the omission or error of information. And pattern matching was used to effectively learn of the users inclination and infer the behavior purpose. The accuracy of the suggested inference model was evaluated by applying to the application recommendation service in the smart phones.

Development of Apparel Coordination System Using Personalized Preference on Semantic Web (시맨틱 웹에서 개인화된 선호도를 이용한 의상 코디 시스템 개발)

  • Eun, Chae-Soo;Cho, Dong-Ju;Lee, Jung-Hyun;Jung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.4
    • /
    • pp.66-73
    • /
    • 2007
  • Internet is a part of our common life and tremendous information is cumulated. In these trends, the personalization becomes a very important technology which could find exact information to present users. Previous personalized services use content based filtering which is able to recommend by analyzing the content and collaborative filtering which is able to recommend contents according to preference of users group. But, collaborative filtering needs the evaluation of some amount of data. Also, It cannot reflect all data of users because it recommends items based on data of some users who have similar inclination. Therefore, we need a new recommendation method which can recommend prefer items without preference data of users. In this paper, we proposed the apparel coordination system using personalized preference on the semantic web. This paper provides the results which this system can reduce the searching time and advance the customer satisfaction measurement according to user's feedback to system.

A Morpheme Analyzer based on Transformer using Morpheme Tokens and User Dictionary (사용자 사전과 형태소 토큰을 사용한 트랜스포머 기반 형태소 분석기)

  • DongHyun Kim;Do-Guk Kim;ChulHui Kim;MyungSun Shin;Young-Duk Seo
    • Smart Media Journal
    • /
    • v.12 no.9
    • /
    • pp.19-27
    • /
    • 2023
  • Since morphemes are the smallest unit of meaning in Korean, it is necessary to develop an accurate morphemes analyzer to improve the performance of the Korean language model. However, most existing analyzers present morpheme analysis results by learning word unit tokens as input values. However, since Korean words are consist of postpositions and affixes that are attached to the root, even if they have the same root, the meaning tends to change due to the postpositions or affixes. Therefore, learning morphemes using word unit tokens can lead to misclassification of postposition or affixes. In this paper, we use morpheme-level tokens to grasp the inherent meaning in Korean sentences and propose a morpheme analyzer based on a sequence generation method using Transformer. In addition, a user dictionary is constructed based on corpus data to solve the out - of-vocabulary problem. During the experiment, the morpheme and morpheme tags printed by each morpheme analyzer were compared with the correct answer data, and the experiment proved that the morpheme analyzer presented in this paper performed better than the existing morpheme analyzer.

The Implementation of the Personalized Emotional Character Agent (개인화된 감정 캐릭터 에이전트의 설계)

  • Baek, Hye-Jung;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.485-492
    • /
    • 2001
  • Recently, character agents are used as a user-friendly interface. In this paper, we have studied a generic framework for emotional character agents which are designed to infer emotions from diverse personalities, situations, user behaviors and to express them. The method of emotion inference is based on blackboard systems which are used to solve the problems in AI. Because it keeps independence between knowledge sources which are rules of emotions, a blackboard-based inference engine is easy to manage knowledge sources, Blackboard-based systems gave the system flexibility. So we can adapt the engine to various application systems. Each emotional agent monitors user behavior, learns user profile and infers user behavior. And it generates characters emotions according to the user profile. So, in case of same situations, the agent can generate different emotions according to users. We have studied to build an personalized emotional character agent which according to situations and user modeling.

  • PDF

Impact of Self-Presentation Text of Airbnb Hosts on Listing Performance by Facility Type (Airbnb 숙소 유형에 따른 호스트의 자기소개 텍스트가 공유성과에 미치는 영향)

  • Sim, Ji Hwan;Kim, So Young;Chung, Yeojin
    • Knowledge Management Research
    • /
    • v.21 no.4
    • /
    • pp.157-173
    • /
    • 2020
  • In accommodation sharing economy, customers take a risk of uncertainty about product quality, which is an important factor affecting users' satisfaction. This risk can be lowered by the information disclosed by the facility provider. Self-presentation of the hosts can make a positive effect on listing performance by eliminating psychological distance through emotional interaction with users. This paper analyzed the self-presentation text provided by Airbnb hosts and found key aspects in the text. In order to extract the aspects from the text, host descriptions were separated into sentences and applied the Attention-Based Aspect Extraction method, an unsupervised neural attention model. Then, we investigated the relationship between aspects in the host description and the listing performance via linear regression models. In order to compare their impact between the three facility types(Entire home/apt, Private rooms, and Shared rooms), the interaction effects between the facility types and the aspect summaries were included in the model. We found that specific aspects had positive effects on the performance for each facility type, and provided implication on the marketing strategy to maximize the performance of the shared economy.

A Collaborative learning using Wiki for the effectiveness of positive interaction (위키를 활용한 협력학습이 타인과의 긍정적인 상호작용에 미치는 영향 연구)

  • Joo, Yun-Jae;Moon, Gyo-Sik
    • 한국정보교육학회:학술대회논문집
    • /
    • 2011.01a
    • /
    • pp.167-173
    • /
    • 2011
  • Recently, the Web 2.0 bas gained much attention as an advanced form of Web technology. It is well observed that openness, participation, and sharing are the key ideas of Web 2.0 among many desirable characteristics of the technology. Furthermore, Wiki is one of the best representing tools that reflect effectively most of the characteristics of Web 2.0. Wiki is widely used to provide a Web-based communication tool for collaborative writing and editing freely. Therefore, it may be used for collaborative learning so that students can learn how to interact online with each other effectively and also acquire communication skills in an affirmative way. In the paper, we will discuss how students can change their aggresive, offensive, judgemental attitudes to affirmative, aggreable, thoughtful ones by way of exposing them to collaborative learning environment using Wiki as their interactive communication tool.

  • PDF

Outlier Detection Techniques for Biased Opinion Discovery (편향된 의견 문서 검출을 위한 이상치 탐지 기법)

  • Yeon, Jongheum;Shim, Junho;Lee, Sanggoo
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.4
    • /
    • pp.315-326
    • /
    • 2013
  • Users in social media post various types of opinions such as product reviews and movie reviews. It is a common trend that customers get assistance from the opinions in making their decisions. However, as opinion usage grows, distorted feedbacks also have increased. For example, exaggerated positive opinions are posted for promoting target products. So are negative opinions which are far from common evaluations. Finding these biased opinions becomes important to keep social media reliable. Techniques of opinion mining (or sentiment analysis) have been developed to determine sentiment polarity of opinionated documents. These techniques can be utilized for finding the biased opinions. However, the previous techniques have some drawback. They categorize the text into only positive and negative, and they also need a large amount of training data to build the classifier. In this paper, we propose methods for discovering the biased opinions which are skewed from the overall common opinions. The methods are based on angle based outlier detection and personalized PageRank, which can be applied without training data. We analyze the performance of the proposed techniques by presenting experimental results on a movie review dataset.

Data Mining Tool for Stock Investors' Decision Support (주식 투자자의 의사결정 지원을 위한 데이터마이닝 도구)

  • Kim, Sung-Dong
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.2
    • /
    • pp.472-482
    • /
    • 2012
  • There are many investors in the stock market, and more and more people get interested in the stock investment. In order to avoid risks and make profit in the stock investment, we have to determine several aspects using various information. That is, we have to select profitable stocks and determine appropriate buying/selling prices and holding period. This paper proposes a data mining tool for the investors' decision support. The data mining tool makes stock investors apply machine learning techniques and generate stock price prediction model. Also it helps determine buying/selling prices and holding period. It supports individual investor's own decision making using past data. Using the proposed tool, users can manage stock data, generate their own stock price prediction models, and establish trading policy via investment simulation. Users can select technical indicators which they think affect future stock price. Then they can generate stock price prediction models using the indicators and test the models. They also perform investment simulation using proper models to find appropriate trading policy consisting of buying/selling prices and holding period. Using the proposed data mining tool, stock investors can expect more profit with the help of stock price prediction model and trading policy validated on past data, instead of with an emotional decision.

A Fashion Design Recommender Agent System using Collaborative Filtering and Sensibilities related to Textile Design Factors (텍스타일 기반의 협력적 필터링 기술과 디자인 요소에 따른 감성 분석을 이용한 패션 디자인 추천 에이전트 시스템)

  • 정경용;나영주;이정현
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.2
    • /
    • pp.174-188
    • /
    • 2004
  • In the life environment changed with not only the quality and the price of the products but also the material abundance, it is the most crucial factor for the strategy of product sales to investigate consumer's sensibility and preference degree. In this perspective, it is necessary to design and merchandise the products in cope with each consumer's sensibility and needs as well as its functional aspects. In this paper, we propose the Fashion Design Recommender Agent System (FDRAS-pro) for textile design applying collaborative filtering personalization technique as one of the methods of material development centered on consumer's sensibility and preference. For a collaborative filtering system based on textile, Representative-Attribute Neighborhood is adopted to determine the number or neighbors that will be used for preferences estimation. Pearson's Correlation Coefficient is used to calculate similarity weights among users. We build a database founded on the sensibility adjectives to develop textile designs by extracting the representative sensibility adjectives from users' sensibility and preferences about textile designs. FDRAS-pro recommends textile designs to a customer who has a similar propensity about textile. To investigate the sensibility and emotion according to the effect of design factors, fertile designs were analyzed in terms of 9 design factors, such as, motif source, motif-background ratio, motif variation, motif interpretation, motif arrangement, motif articulation, hue contrast, value contrast, chroma contrast. Finally, we plan to conduct empirical applications to verify the adequacy and the validity of our system.