• Title/Summary/Keyword: 사면 안정성

Search Result 714, Processing Time 0.033 seconds

Stability Assessment on the Final Pit Slope in S Limestone Mine (S 석회석광산에서의 최종 잔벽사면의 안정성 평가)

  • Sun, Woo-Choon;Lee, Yun-Su;Kim, Hyun-Woo;Lee, Byung-Joo
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.99-109
    • /
    • 2013
  • The slopes of open-pit mine are typically designed without considering the reinforcement and support method due to the economical efficiency. However, the long-term stability of final pit slope is needed in some case, therefore the appropriate measures that can improve the stability are required. In this study, the field survey and laboratory test were carried out in S limestone mine. The stability assessment of final pit slope was performed through the stereographic projection method, SMR, and numerical analysis. And countermeasures for stabilization were proposed. The results of analysis show that full scale of slope failure is not expected but the failures of bench slope scale are likely to occur. In oder to increase the stability of bench slope, we suggested the remedial methods as follows: excavating the final pit slope by pre-splitting blasting, placing the wide berm in the intermediate bench slope and installing the horizontal drainage hole in the place of local ground water runoff.

Stability Analysis for Jointed Rock Slope Using Ubiquitous Joint Model (편재절리모델을 이용한 절리 암반 사면의 안정성 해석)

  • 박연준;유광호
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 1998
  • Limit equilibrium method is widely used for the stability analysis of soil slopes. In jointed rock slopes however, the failure of the slope is largely dependent upon the strength and deformability of the joints in the rock mass and quite often failure occurs along the joints. This paper describes the use of ubiquitous joint model for the stability analysis of the jointed rock slopes. This model is essentially an anisotropic elasto-plastic model and can simulate two sets of joint in arbitrary orientations. Validation of the developed with the factor of safety equal to unity was selected when the shape of the failure plane is assumed log spiral. Then the factor of safety of the rock slope having two perpendicular joint sets was calculated while rotating joint orientations. Rusults were compared with limit equilibrium solutions on soil slopes having equivalent soil properties when plane sliding was assumed. Developed model predicted the factor of safety of jointed rock slope in a reasonable accuracy when joint spacing is sufficiently small.

  • PDF

A Study on Rainfall-induced Erosion of Land Surface on Reinforced Slope Using Soil Improvement Material (지반 개량재에 의한 보강사면의 강우시 표면침식에 관한 연구)

  • Kim, You-Seong;Kim, Jae-Hong;Bhang, In-Hwang;Seo, Se-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.49-59
    • /
    • 2013
  • Heavy rainfall intensity may cause shallow slope failures and debris flow by rill erosion and scour on land surface. The paper represents the difference between native soil (weathered soil) and reinforced soil, which is mixed by hardening agent with flyash as main material, for investigating experimental findings of rill erosion and erosion. Results obtained from artificial rainfall simulator show that erosion rate of reinforced soil mixed with hardening agent is reduced by 20% because an amount of eroded soil on slope surface is inversely proportional to the increase of soil strength. For example, rainfall of 45mm (at the elapsed time of 25mins in rainfall intensity of 110mm/hr) triggers rill erosion on native soil surface, but the rill erosion on reinforced soil surface does not even occur at 330mm rainfall (at the elapsed time of 3hrs in rainfall intensity of 110mm/hr). As a result of slope stability analysis, it was found that the construction method for reinforced soil surface would be more economical, easy and fast construction technology than conventional reinforcement method.

A Study of Slope Stability Analysis and Reinforcement on Colluvial Soil Slope in Hyusok, Danyang (붕적토 사면의 안정성 해석과 보강 대책에 관한 연구 - 단양군 휴석동 붕괴사면을 중심으로-)

  • 구호본;이종현;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.43-50
    • /
    • 2000
  • 충북단양군 영춘면 휴석동 지역에 위치한 위험사면은 1972년 456mm의 집중강우에 의해 사면붕괴가 발생하여 가옥 2채붕괴 등의 피해를 유발시켰으며, 지속적인 지반침하가 진행되고 있다. 남한강 하류에 접하고 있는 상기의 위험사면은 산사태에 의한 토사의 이동시 남한강을 덮치게 되어 그 유로의 변화를 일으켜 영춘면의 지역의 침수피해의 대규모의 재해를 일으킬 수 있는 위험성이 내재되어 있다. 본 연구는 상기 위험사면에 대한 지반조사, 지하수 특성 조사 등을 통해 붕적토 사면의 안정해석을 수행하여 최적의 조강 대책안을 제시하고 이에 따른 재해 예방을 도모하고자 한다. 보강대책을 붕적토 사면의 거동특성과 위험사면의 지형적 특성 등을 고려하여 집수정, 수평배수공, 앵커공 및 보강토 옹벽의 복합공법에 의해 위험사면의 안정성을 확보하는 방안을 제안하였다.

  • PDF

Effect of Backwater Pressure and Restoration by Mattress (사면 Mattress에 의한 배수압변화와 식생복원)

  • Park Hee Yoon;Bae Sang Soo;Jee Hong Kee;Lee Soontak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1383-1387
    • /
    • 2005
  • 사면의 식생이 초기에는 강우에 의해서 표면흐름, 지하수위 증가, 지표수의 침윤에 의해서 성장이 될 수 있으나, 시간이 경과함에 따라 식생에 의한 사면의 안정성을 확보 하는 데에는 큰 영향을 미치지 못한다. 즉, 사면의 식생을 복우언시켜 식물근(뿌리)에 의해서 사면을 안정화 시키기 위해서는 사면의 위치, 고도 및 방향 등에 따라 적응할 수 있는 식물의 선택과 성장에 충분한 수분을 보습할 수 있는 구조의 사면계획과 구조물 설치가 필수적이다. 본 연구에서는 절$\cdot$성토면에서 경사면의 붕괴를 방지하고 식생을 복원하는 방법으로 Mattress Gabion을 제안하였다. 정형화되고 유연성 있는 다공성 Mattress 구조를 통한 식생의 복원은 사면의 안정과 환경친화적인 목적을 모두 만족할 수 있었다. 특히, Gabion 근고공이 설치된 이후에 공극이 큰 Mattress 구조물을 중심으로 식물의 뿌리를 지반에 직접 연결하거나, 식생 활착이 어려운 암반 절취 사면에서도 Mattress 옹벽을 통해서 식물이 양질의 흙에 직접 활착할 수 있도록 설계한 사면 Mattress의 경우는 사면의 안정성 증대와 아울러 지하수의 표면흐름과 투수 및 침윤에 의한 식물의 성장피해를 최소화하고 시간이 지날수록 식생에 의해서 Mattress Gabion 옹벽이 내구성과 유연성을 유지할 수 있었다.

  • PDF

Stability Analysis by FEM on New Large Shiplock Slopes in Yangtze River (유한요소법에 의한 양쯔강 신설 대수로사면 안정검토)

  • Chen, Jian;Choi, Yong-Ki;Park, Jong-Ho;Woo, Sang-Baik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.20-27
    • /
    • 2006
  • 중국 Three Gorges Project의 대수로사면 안정성은 설계와 시공측면에 있어 주요 관심사가 되었다. 사면 굴착으로 인한 제하과정에서 암반은 역학적으로 불안정한 상태에 놓인다. 본 논문은 FEM(2D-3D)를 이용하여 단층 암반 굴착으로 인한 암반사면의 안정성을 평가하였다. 해석결과 굴착 후 수로사면의 양측 수직벽과 분리울타리의 중간 상부에서 인장응력과 전단손상영역이 주로 발생하였다. 해석결과를 토대로 대규모 사면활동에 대한 안정성을 확인하였으나 시공단계에서 국부적 사면활동을 방지하기 위한 록볼트와 록앵커 등의 보강이 필요한 것으로 검토되었다.

  • PDF

Proposal of stability standards for slopes reclaimed by soils mixed with stone dust (석분슬러지 혼합토 매립사면에 대한 안정성 기준 제안)

  • Song, Young-Suk;Kim, Kyeng-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.425-434
    • /
    • 2007
  • In this paper, the stability standards of slopes reclaimed by soils mixed with stone dust were proposed to manage the stone dust as recovery soils. First of all, the mixed ratio between stone dust and natural soil is classified into 5 groups, and a series of soil test was performed in each group. As the results of tests, the shear strength and the maximum dry unit weight were increased in decrease of the mixed ratio of stone dust. On the basis of the investigation to the safety factor standards of embankment slopes in and outside the country, a slope stability rank of slopes reclaimed by mixed soils were divided into 3 stages such as unstable stage, attention stage and stable stage. The slope angle, the slope height and the mixed ratio with stone dust were proposed by the result of stability analysis of slopes reclaimed by mixed soils. As the result of slope stability analysis, the slope angle of 1 : 1.8 at the reclaimed slope should be constructed in case of the slope height of 10 m. Also, the slope angle of 1 : 1.8 and the mixed ratio of stone dust less than 50% should be constructed in case of the slope height of 15 m. The analysis result of reclaimed slope constructed inside the quarry is similar to that of reclaimed slope constructed on the open ground in same conditions of the slope angle, the slope height and the mixed ratio with stone dust. The proposed stability standards of slopes reclaimed by soils mixed with stone dust can be used practically at the quarrying site.

Slope stability associated with construction (건설공사와 사면 안정성)

  • Baek, Yong;Kim, Gyo-Won;Koo, Ho-Bon
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.1-17
    • /
    • 2000
  • In this study, 270 cut-slopes are investigated and statistical analyses are performed. More than 84% of unstable slopes are rock slopes or rock-soil mixed slopes, and 72% of the slopes have 10 to 30 meter in height. And in order to clarify the cause of failure, 3 slopes which have been failed are back-analysed by using the computer programs such as DIPS, UDEC and PCSTABL5M. A heavy rainfall during rainy season is a main cause of slope failure, and a blasting vibration during construction could also give a significant influence on the slope instability.

  • PDF

Stability Analysis of Rock Slope in Limestone Mine by Numerical Analysis (수치해석에 의한 석회암 채굴 사면의 안정성 해석)

  • 임한욱;김치환;백환조
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.270-278
    • /
    • 2001
  • Two numerical methods such as DEM and FDM were adopted to analysis of rock slope stability, of which dimensions are about 150 m(length), 58 m(height), 70°dip, in Halla limestone mine. For this rock slope stability analysis, strength reduction method was used to calculate the safety factor of slope through numerical method. To keep the rock slope safely, it is proposed to reduce the height of the rock slope from 58 m to 45 m and to reduce the angle of the slope from 70°to 55°, too.

  • PDF

Comparative Study of Square-Inventory Method with Scanline Survey in Slope Stability Analysis (사면 안정 분석을 위한 정면적법과 선조사법의 비교연구)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.119-129
    • /
    • 2009
  • In relation to slope stability analysis, geologic characteristics and engineering properties of the discontinuities in three slopes selected are compared and analyzed by both square-inventory method and scanline survey. The aim of the study is in evaluating which method is applied better in slope stability analysis by comparing results of the two methods with those of direct observation on outcrop of slope failures generated. In each slope, results of comparative analysis among geologic and engineering properties are analyzed similarly one another. However, results of orientation analysis in slope 2 are different each other, which indicates orientation of joints in slope 2 depends on persistency and frequency of each joint and also indicates appearance of new joint set with different orientation. Probability density distribution and spacing in slope 3 are high in comparison to those in slope 2 and 3. The reasons are that distribution of psammitic rocks and development of minor folds in slope 3 unlike slope 2 and 3 are closely associated with development of joints. The research data indicate that the square-inventory method predicts more precise failure aspects and is more effective way than scanline survey in analyzing slope stability of the study area.