• Title/Summary/Keyword: 사면안정해석

Search Result 558, Processing Time 0.022 seconds

Proposal of stability standards for slopes reclaimed by soils mixed with stone dust (석분슬러지 혼합토 매립사면에 대한 안정성 기준 제안)

  • Song, Young-Suk;Kim, Kyeng-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.425-434
    • /
    • 2007
  • In this paper, the stability standards of slopes reclaimed by soils mixed with stone dust were proposed to manage the stone dust as recovery soils. First of all, the mixed ratio between stone dust and natural soil is classified into 5 groups, and a series of soil test was performed in each group. As the results of tests, the shear strength and the maximum dry unit weight were increased in decrease of the mixed ratio of stone dust. On the basis of the investigation to the safety factor standards of embankment slopes in and outside the country, a slope stability rank of slopes reclaimed by mixed soils were divided into 3 stages such as unstable stage, attention stage and stable stage. The slope angle, the slope height and the mixed ratio with stone dust were proposed by the result of stability analysis of slopes reclaimed by mixed soils. As the result of slope stability analysis, the slope angle of 1 : 1.8 at the reclaimed slope should be constructed in case of the slope height of 10 m. Also, the slope angle of 1 : 1.8 and the mixed ratio of stone dust less than 50% should be constructed in case of the slope height of 15 m. The analysis result of reclaimed slope constructed inside the quarry is similar to that of reclaimed slope constructed on the open ground in same conditions of the slope angle, the slope height and the mixed ratio with stone dust. The proposed stability standards of slopes reclaimed by soils mixed with stone dust can be used practically at the quarrying site.

Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results (기후변화 시나리오를 이용한 광역 사면안정 해석(2): 결과분석)

  • Oh, Sung-Ryul;Lee, Gi-Ha;Choi, Byoung-Seub;Lee, Kun-Hyuk;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.3
    • /
    • pp.1-19
    • /
    • 2014
  • This study aims to assess the slope stability variation of Jeonbuk drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the previous research by Choi et al.(2013). For a large-scale slope stability analysis, we developed a GIS-based database regarding topographic, geologic and forestry parameters and also calculated daily maximum rainfall for the study period(1971~2100). Then, we assess slope stability variation of the 20 sub-catchments of Jeonbuk under the climate change scenario. The results show that the areal-average value of safety factor was estimated at 1.36(moderately stable) in spite of annual rainfall increase in the future. In addition, 7 sub-catchments became worse and 5 sub-catchments became better than the present period(1971~2000) in terms of safety factor in the future.

A Stability Analysis of Geosynthetics Reinforced Soil Slopes I. - Slope Stability Analysis Considering Reinforcing Effects - (토목섬유 보강 성토사면의 안정해석 I. - 보강효과를 고려한 사면안정해석 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.95-105
    • /
    • 2005
  • Generally, a modified version of limit equilibrium method can be used to evaluate a slope stability of the geosynthetic reinforced soil slopes. In most cases, resisting effects of geosynthetic reinforcement are dealt with considering an increased shear strength on the potential slip surface. However, it is not clear that the methods satisfy all three equilibrium equations. As we know, the pattern of normal stress distribution along the slip surface is the key factor in calculating the safety factor of slopes. In this study, the new slope stability analysis method in which not only reinforcing effects of geosynthetics can be considered but also all three equilibrium equations can be satisfied was proposed with assuming the normal stress distribution along the slip surface as quadratic curve with horizontal $\chi-coordinate$. A number of illustrative examples, including published slope stability analysis examples for the reinforced and unreinforced soil slopes, loading test of large scale reinforced earth wall and centrifuge model tests on the geotextile reinforced soil slopes, were analyzed. As a result, it is shown that the newly suggested method yields a relatively accurate factor of safety for the reinforced and unreinforced soil slopes.

Stability Analysis of Embankment Slopes Consisting of Rock Fragments (암석 버력으로 성토한 사면의 안정성 해석)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.12 no.2
    • /
    • pp.83-91
    • /
    • 2002
  • Stability analysis of rocky embankment slopes is done by both the limit equilibrium method and the finite difference method. The height or the rocky embankment is approximately 40 m and the side slope is 1 vertical to 1.5 horizontal. The cohesion and internal friction angle of rock debris are assumed zero and 43$^{\circ}$, respectively. For finite difference analysis, strength reduction method is used to calculate the saft factor of the slope. As a result, the safety factor of the slope is discovered to be 1.4 by using either methods. Considering that the design criteria of the safety factor is 1.3, it can be judged that the rock fragments embankment slope is in a stable state.

Optimum Design of a Simple Slope considering Multi Failure Mode (다중 파괴모드를 고려한 단순 사면의 최적 설계)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.73-80
    • /
    • 2010
  • Conventional slope stability analysis is focused on calculating minimum factor of safety or maximum probability of failure. To minimize inherent uncertainty of soil properties and analytical model and to reflect various analytical models and its failure shape in slope stability analysis, slope stability analysis method considering simultaneous failure probability for multi failure mode was proposed. Linear programming recently introduced in system reliability analysis was used for calculation of simultaneous failure probability. System reliability analysis for various analytical models could be executed by this method. Optimum design to determine angle of a simple slope is executed for multi failure mode using linear programming. Because of complex consideration for various failure shapes and modes, it is possible to secure advanced safety by using simultaneous failure probability.

A numerical study on the influence of small underground cavities for estimation of slope safety factor (소규모 지하공동이 사면안전율 산정에 미치는 영향에 관한 수치해석 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Song, Ki-Il;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.621-640
    • /
    • 2019
  • Quantitative stability assessment of underground cavities can be presented as a factor of safety based on the Shear Strength Reduction Method (SSRM). Also, SSRM is one of the stability evaluation methods commonly used in slope stability analysis. However, there is a lack of research that considers the relationship between the probability of occurrence of cavities in the ground and the potential failure surface of the slope at the same time. In this study, the effect of small underground cavities on the failure behavior of the slope was analyzed by using SSRM. Considering some of the glaciology studies, there is a case that suggests that there is a cavity effect inside the glacier in the condition that the glacier slides. In this study, the stability evaluation of underground cavities and slope stability analysis, where SSRM is used in geotechnical engineering field, was carried out considering simultaneous conditions. The slope stability analysis according to the shape and position change of underground cavities which are likely to occur in the lower part of a mountain road was analyzed by using SSRM in FLAC3D software and the influence of underground cavities on the slope factor of safety was confirmed. If there are underground cavities near slope potential failure surface, it will affect the calculation of a factor of safety. The results of this study are expected to be basic data on slope stability analysis with small underground cavities.

Slope Stability Analysis (사면의 파괴형태 및 그 안정해석에 관한 연구)

  • Lim, Jong Seok;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.11-18
    • /
    • 1984
  • There are two different methods in the stability analysis of slopes depending upon the 1ocations and the types of assumed failure planes, which are the infinite slope analysis and the finite slope analysis. The infinite slope analysis is simple and easier in its application. However, since the method neglects the end effects and assumes the failure plane to be located at the shallow depth and parallel to the slope, the slopes to be analyzed by the method should be limited to a certain range. Thus, it is intended in this paper to define the infinite slopes whose stability may be analyzed by the infinite slope analysis. As a result, it is obtained that the method of infinite slope analysis may be applied to the slopes which have the ratio of the slope height to the depth of the failure plane of 9 or bigger.

  • PDF

Stability of Bridge Abutments on Soft Ground Undergoing Lateral Flow (측방유동 연약지반상 교대의 안정성)

  • 홍원표;송영석;신도순;손규만
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.199-208
    • /
    • 2001
  • 본 연구의 목적은 교대가 설치된 지반의 사면안전율과 교대측방변위의 관계를 분석하여 교대의 측방이동 판정기준을 마련하고자 함에 있다. 이를 위하여 국내의 연약지반에 설치된 30개 교대의 측방이동사례를 조사하고, SLOPILE (Ver 2.0)프로그램을 이용하여 교대의 측방변위와 교대기초말뚝의 사면안정효과를 고려한 사면안정해석을 실시한다. 해석결과 교대기초말뚝의 실측측방변위를 고려할 경우 1.8이상 되어야 한다. 또한, 교대기초말뚝의 허용측방변위량에 따른 사면안정 해석결과, 교대의 허용측방변위가 작게 규정될수록 사면안정성에 기여하는 말뚝의 효과는 감소하고 있음을 알 수 있다.

  • PDF

불연속면을 고려한 암반 사면의 안정성 해석

  • 이상수;박연준;유광호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2001.03a
    • /
    • pp.177-187
    • /
    • 2001
  • 암반사면의 안정성은 암반 내에 발달한 불연속면의 방향성과 파괴특성에 지대한 영향을 받는다. 두 조의 연속성이 좋은 절리가 발달한 암반의 거동을 해석하기 위해 FLAC의 FISH 언어로 작성된 편재 절리모델을 사용하여 절리암반사면의 안정성을 평가하였다. 해석 결과는 절리의 간격과 방향성을 달리하면서 수행된 UDEC 해석과 저면 마찰 모델 시험결과와 비교하였다. UDEC 해석과 저면 마찰 모형시험 의해 발생된 파괴면의 형상은 유사하였으며, 이 결과로부터 편재절리모델에 의한 FLAC 해석에서의 파괴면은 두 조의 교차하는 절리를 따라 계단식으로 파괴면이 발생함을 추정할 수 있었다.

  • PDF

A Case Study on the Reinforcement of Stabilizing Piles against Slope Failures in a Cut Slope (사면붕괴가 발생된 절개사면에서의 억지말뚝 보강 사례연구)

  • Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.16 no.2 s.48
    • /
    • pp.189-199
    • /
    • 2006
  • This paper presents a field study of the stability of slope collapsed during road construction and proposes a reasonable countermeasure if the current slope is unstable. As a result of slope investigation, it was found that the slope includes five tension cracks and the sliding surface is started from the tension crack and propagated the surface soil layer through weathered rock layer. The slope stability analyses are conducted in case of dry and rainfall seasons. The results indicate that the slope is unstable status. A reinforcement method of slope failure should be selected according to the scale of failure. That is, the scale of slope failure, which is classified small, middle and large size determines the reinforcement method of slope. Since the slope interested in this study is large size failure slope, the reinforcement method to control slope failure is selected stabilizing piles, and seed spray and drainage of surface waterare also selected to remain the factor of safety. The SLOPILE (Ver. 3.0) program is applied in order to do stability analysis of slope reinforced by piles. As the result of analysis, the slope reinforced by a row of piles shows the stable state. It is clearly confirmed that the stabilizing of piles can improve the stability of slope.