• Title/Summary/Keyword: 사고모형

Search Result 1,115, Processing Time 0.022 seconds

Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level (사고등급별 고속도로 교통사고 처리시간 예측모형 개발)

  • LEE, Soong-bong;HAN, Dong Hee;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2015
  • Nonrecurrent congestion of freeway was primarily caused by incident. The main cause of incident was known as a traffic accident. Therefore, accurate prediction of traffic incident clearance time is very important in accident management. Traffic accident data on freeway during year 2008 to year 2014 period were analyzed for this study. KNN(K-Nearest Neighbor) algorithm was hired for developing incident clearance time prediction model with the historical traffic accident data. Analysis result of accident data explains the level of accident significantly affect on the incident clearance time. For this reason, incident clearance time was categorized by accident level. Data were sorted by classification of traffic volume, number of lanes and time periods to consider traffic conditions and roadway geometry. Factors affecting incident clearance time were analyzed from the extracted data for identifying similar types of accident. Lastly, weight of detail factors was calculated in order to measure distance metric. Weight was calculated with applying standard method of normal distribution, then incident clearance time was predicted. Prediction result of model showed a lower prediction error(MAPE) than models of previous studies. The improve model developed in this study is expected to contribute to the efficient highway operation management when incident occurs.

Comparison of Methodologies for Characterizing Pedestrian-Vehicle Collisions (보행자-차량 충돌사고 특성분석 방법론 비교 연구)

  • Choi, Saerona;Jeong, Eunbi;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.6
    • /
    • pp.53-66
    • /
    • 2013
  • The major purpose of this study is to evaluate methodologies to predict the injury severity of pedestrian-vehicle collisions. Methodologies to be evaluated and compared in this study include Binary Logistic Regression(BLR), Ordered Probit Model(OPM), Support Vector Machine(SVM) and Decision Tree(DT) method. Valuable insights into applying methodologies to analyze the characteristics of pedestrian injury severity are derived. For the purpose of identifying causal factors affecting the injury severity, statistical approaches such as BLR and OPM are recommended. On the other hand, to achieve better prediction performance, heuristic approaches such as SVM and DT are recommended. It is expected that the outcome of this study would be useful in developing various countermeasures for enhancing pedestrian safety.

Development of Severity Model for Rural Unsignalized Intersection Crashes (지방부 비신호 교차로 교통사고 심각도 예측모형 개발 - 수도권 주변 및 전라북도 지역의 3지 비신호 교차로를 중심으로 -)

  • Lee, Dong-Min;Kim, Eung-Cheol;Sung, Nak-Moon;Kim, Do-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.47-56
    • /
    • 2008
  • Generally, accident exposure at intersections is relatively higher than that at roadway segments due to more possibility of merging, diverging, turning, crossing, and weaving maneuver. Furthermore, the traffic accident rate at intersections has been rapidly increasing since 1990's. Since there is more opportunity of conflict at unsignalized intersection, frequency and severity of traffic accident are more severe than signalized intersections. The purpose of the study is to analyze factors causing vehicle crashes and provide intersection design guidelines to improve intersection safety. For this study, vehicle to vehicle crash data of 116 rural 3 legs unsignalized were collected and field surveys were conducted for traffic and geometric conditions. Ordered probit models were developed to analyze the severity of crashes. It was found that weather, obstacles in minor roadsides, presence of major exclusive right lane, presence of major road crosswalk, difference between posted speed of major road and minor road, land-use around intersections, shoulder width of major road, ADT of major road are significant factors for intersection safety.

  • PDF

Development of Traffic Accident Frequency Model for Evaluating Safety at Rural Signalized Intersections (지방부 신호교차로 안전성 판단을 위한 사고예측모형 개발)

  • Kim, Eung-Cheol;Lee, Dong-Min;Kim, Do-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.53-63
    • /
    • 2008
  • Even though accident frequencies in roadway segments have been decreasing since 2000, there has been increasing the number of vehicle crashes at intersections. Due to this increase, safety problems at intersection recently started to be regarded as significant issues. The purpose of this study is to analyze the effects of road conditions, traffic operational conditions, and other influencing condition on intersection safety. Then a traffic accident frequency prediction model to evaluate the safety at intersections was developed based on the correlations between influencing factors and vehicle crashes. In this research, critically significant factors affecting vehicle crashes at rural four-legs signalized intersections were investigated. It was found that Poisson regression was the best fit method to developing a accident frequency modeling using the collected data in this study. Through this study, it was concluded that exclusive left turn lane, crosswalk, posted speed, lighting, angle, and ADT are significant influencing factors on the intersection safety.

  • PDF

The Study on Traffic Accident Trend by Age with Time Series Models (연령별 사고 추세 및 시계열 분석모형에 관한 연구)

  • Yoon, Byoung-Jo;Ko, Eun-Hyeck;Yang, Sung-Ryong
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.255-256
    • /
    • 2016
  • 우리나라의 2015년 노인 인구는 전체 인구의 13.1%를 차지하고 2015년 경찰청 교통사고통계에 의하면 65세 이상 노인의 교통사고 사망률은 전체 교통사고 사망률의 약 2.57배 높은 것으로 나타났다. 본 연구에서는 노인 운전자와 성인 운전자의 사망사고에 대한 시계열 모형을 확인하고 추세에 큰 차이가 있는지 확인하고자 하였다. 분석방법인 시계열분석은 단기예측에 신뢰성이 더 높은 것으로 알려져 있다. ARIMA 모형으로 시계열분석을 하기 위해서는 최소 50~60개 이상의 관측값이 필요하며 따라서 본 연구에서는 인천광역시를 대상으로 2010년부터 2015년까지 6년간의 교통사고 데이터를 노인 운전자와 성인 운전자로 구분하고 사망사고에 대한 시계열 모형을 확인하였다.

  • PDF

Developing Traffic Accident Models Using Panel Data (Focused on the 50 intersections in Cheongju) (패널자료를 이용한 교통사고모형 개발 (청주시 교차로 50개 지점을 대상으로))

  • Kim, Jun-Yong;Na, Hui;Park, Min-Gyu;Park, Byeong-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.4
    • /
    • pp.95-101
    • /
    • 2011
  • This study proposes the accident estimation model developed based on the time-series cross-sectional data at 50 intersections in Cheongju. The data were collected repeatedly and accumulated from 2004 to 2007. This study focused on deriving the optimal among the various models including TSCSREG(Time Series Cross Section Regression). Four different models utilizing various elements affecting accidents were developed. Through a statistical test, it was found that the t values of independent variables of the fixed effect models were less than those of the random effect models. Two variables were then found to be positive to the accidents: the number of crosswalks at an intersection and the number of intersections.

Traffic Violation Fine Standard by the Severity and the Number of Total/Fatal Accidents (교통/사망 사고 발생건수 및 보도에 의한 범칙금 부과 방안)

  • 이태경;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.16 no.4
    • /
    • pp.89-98
    • /
    • 1998
  • 교통사고의 원인은 인적 요인, 차량적 요인, 도로 환경적 요인으로 분류된다. 주어진 도로 환경과 차량 조건하에서는 운전자가 마지막으로 안전을 제어할 책임을 지고 있다. 따라서, 교통사고를 사전에 예방하기 위하여 운전자의 교통법규 위반 행위에 대하여는 도로교통법에 근거하여 징역, 벌금, 구류, 과료, 과태료, 범칙금에 처하고 있다. 교통법규 위반 행위 단속 시에는 교통사고 유발 가능성과 위험도에 따라 단속의 강약을 포함하여 차등화된 처벌이 이루어져야 한다. 교통 범칙금 기준 제시를 위하여 1991~1995년의 5년간 교통사고 및 교통법규 위반을 분석한 결과 전체 교통법규 위반 단속 중 교통사고를 야기하는 동적 위반 행위인 사고관련 위반 행위 단속의 비율이 44%로 일본의 61%에 비해 매우 낮은 수준이다. 따라서 사고유발 가능성에 근거한 교통법규 위반 행위 단속의 강화가 필요하다. 한편 범칙금 부과방안으로 피해도 모형과 빈도 모형을 비교한 결과 교통법규 위반 행위로 인해 발생된 교통사고 비용을 고려한 피해도 모형은 범칙금의 차등화가 분명하지 않고 변별력이 뚜렷이 나타나지 않아 적합하지 않은 것으로 분석되었다. 교통법규 위반 행위에 따른 빈도 모형은 교통사고 건수와 사망사고 건수의 가중치(w)설정을 위해 동적 위반행위가 우리나라와 유사한 일본 자료와 비교한 결과 가중치가 한국=0.7, 일본=0.8일 때 상대적으로 $x^2$가 31.71로 가장 낮게 나타났다. 따라서, 사고건수에 대한 가중치는 0.7로 사망사고에 대한 가중치는 0.3을 적용하였다. 마지막으로 현행 범칙금과 제안된 범칙금을 비교분석하였다.

  • PDF

Developing a Traffic Accident Prediction Model for Freeways (고속도로 본선에서의 교통사고 예측모형 개발)

  • Mun, Sung-Ra;Lee, Young-Ihn;Lee, Soo-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.2
    • /
    • pp.101-116
    • /
    • 2012
  • Accident prediction models have been utilized to predict accident possibilities in existing or projected freeways and to evaluate programs or policies for improving safety. In this study, a traffic accident prediction model for freeways was developed for the above purposes. When selecting variables for the model, the highest priority was on the ease of both collecting data and applying them into the model. The dependent variable was set as the number of total accidents and the number of accidents including casualties in the unit of IC(or JCT). As a result, two models were developed; the overall accident model and the casualty-related accident model. The error structure adjusted to each model was the negative binomial distribution and the Poisson distribution, respectively. Among the two models, a more appropriate model was selected by statistical estimation. Major nine national freeways were selected and five-year dada of 2003~2007 were utilized. Explanatory variables should take on either a predictable value such as traffic volumes or a fixed value with respect to geometric conditions. As a result of the Maximum Likelihood estimation, significant variables of the overall accident model were found to be the link length between ICs(or JCTs), the daily volumes(AADT), and the ratio of bus volume to the number of curved segments between ICs(or JCTs). For the casualty-related accident model, the link length between ICs(or JCTs), the daily volumes(AADT), and the ratio of bus volumes had a significant impact on the accident. The likelihood ratio test was conducted to verify the spatial and temporal transferability for estimated parameters of each model. It was found that the overall accident model could be transferred only to the road with four or more than six lanes. On the other hand, the casualty-related accident model was transferrable to every road and every time period. In conclusion, the model developed in this study was able to be extended to various applications to establish future plans and evaluate policies.

Modeling Traffic Accident Characteristics and Severity Related to Drinking-Driving (음주교통사고 영향요인과 심각도 분석을 위한 모형설정)

  • Jang, Taeyoun;Park, Hyunchun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.577-585
    • /
    • 2010
  • Traffic accidents are caused by several factors such as drivers, vehicles, and road environment. It is necessary to investigate and analyze them in advance to prevent similar and repetitive traffic accidents. Especially, the human factor is most significant element and traffic accidents by drinking-driving caused from human factor have become social problem to be paid attention to. The study analyzes traffic accidents resulting from drinking-driving and the effects of driver's attributes and environmental factors on them. The study is composed as two parts. First, the log-linear model is applied to analyze that accidents by drinking or non-drinking driving associate with road geometry, weather condition and personal characteristics. Probability is tested for drinking-driving accidents relative to non-drinking drive accidents. The study analyzes probability differences between genders, between ages, and between kinds of vehicles through odds multipliers. Second, traffic accidents related to drinking are classified into property damage, minor injury, heavy injury, and death according to their severity. Heavy injury is more serious than minor one and death is more serious than heavy injury. The ordinal regression models are established to find effecting factors on traffic accident severity.