• Title/Summary/Keyword: 사고객체

Search Result 174, Processing Time 0.03 seconds

Implementation of an alarm system with AI image processing to detect whether a helmet is worn or not and a fall accident (헬멧 착용 여부 및 쓰러짐 사고 감지를 위한 AI 영상처리와 알람 시스템의 구현)

  • Yong-Hwa Jo;Hyuek-Jae Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.150-159
    • /
    • 2022
  • This paper presents an implementation of detecting whether a helmet is worn and there is a fall accident through individual image analysis in real-time from extracting the image objects of several workers active in the industrial field. In order to detect image objects of workers, YOLO, a deep learning-based computer vision model, was used, and for whether a helmet is worn or not, the extracted images with 5,000 different helmet learning data images were applied. For whether a fall accident occurred, the position of the head was checked using the Pose real-time body tracking algorithm of Mediapipe, and the movement speed was calculated to determine whether the person fell. In addition, to give reliability to the result of a falling accident, a method to infer the posture of an object by obtaining the size of YOLO's bounding box was proposed and implemented. Finally, Telegram API Bot and Firebase DB server were implemented for notification service to administrators.

Accident Detection System for Construction Sites Using Multiple Cameras and Object Detection (다중 카메라와 객체 탐지를 활용한 건설 현장 사고 감지 시스템)

  • Min hyung Kim;Min sung Kam;Ho sung Ryu;Jun hyeok Park;Min soo Jeon;Hyeong woo Choi;Jun-Ki Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.605-611
    • /
    • 2023
  • Accidents at construction sites have a very high rate of fatalities due to the nature of being prone to severe injury patients. In order to reduce the mortality rate of severely injury patients, quick response is required, and some systems that detect accidents using AI technology and cameras have been devised to respond quickly to accidents. However, since existing accident detection systems use only a single camera, there are blind spots, Thus, they cannot detect all accidents at a construction site. Therefore, in this paper, we present the system that minimizes the detection blind spot by using multiple cameras. Our implemented system extracts feature points from the images of multiple cameras with the YOLO-pose library, and inputs the extracted feature points to a Long Short Term Memory-based recurrent neural network in order to detect accidents. In our experimental result, we confirme that the proposed system shows high accuracy while minimizing detection blind spots by using multiple cameras.

AI-based incident handling using a black box (블랙박스를 활용한 AI 기반 사고처리)

  • Park, Gi-Won;Lee, Geon-woo;Yu, Junhyeok;Kim, Shin-Hyoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.1188-1191
    • /
    • 2021
  • The function of the black box can be combined with a car to check the video through a cloud server, reduce the hassle of checking the video through a memory card, check the black box image in real time through a PC and smartphone, and check the user's Excel, brake operation status, and handle control record at the time of the accident. In addition, the goal was to accurately identify vehicle accidents and simplify accident handling through artificial intelligence object recognition of black box images using cloud services. Measures can be prepared to preserve images even if the black box itself loses, such as fire, flooding, or damage that occurs in an accident. It has been confirmed that the exact situation before and after the accident can be grasped immediately by providing object recognition and log recording functions under actual driving experimental conditions.

Intelligent CCTV for Port Safety, "Smart Eye" (항만 안전을 위한 지능형 CCTV, "Smart Eye")

  • Baek, Seung-Ho;Ji, Yeong-Il;Choi, Han-Saem
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.1056-1058
    • /
    • 2022
  • 본 연구는 항만에서 안전 수칙을 위반하여 발생하는 사고 및 이상행동을 실시간 탐지를 수행한 후 위험 상황을 관리자가 신속하고 정확하게 대처할 수 있도록 지원하는 지능형 CCTV, Smart Eye를 제안한다. Smart Eye는 컴퓨터 비전(Computer Vision) 기반의 다양한 객체 탐지(Object Detection) 모델과 행동 인식(Action Recognition) 모델을 통해 낙하 및 전도사고, 안전 수칙 미준수 인원, 폭력적인 행동을 보이는 인원을 복합적으로 판단하며, 객체 추적(Object Tracking), 관심 영역(Region of Interest), 객체 간의 거리 측정 알고리즘을 구현하여, 제한구역 접근, 침입, 배회, 안전 보호구 미착용 인원 그리고 화재 및 충돌사고 위험도를 측정한다. 해당 연구를 통한 자동화된 24시간 감시체계는 실시간 영상 데이터 분석 및 판단 처리 과정을 거친 후 각 장소에서 수집된 데이터를 관리자에게 신속히 전달하고 항만 내 통합관제센터에 접목함으로써 효율적인 관리 및 운영할 수 있게 하는 '지능형 인프라'를 구축할 수 있다. 이러한 체계는 곧 스마트 항만 시스템 도입에 이바지할 수 있을 것으로 기대된다.

Kubernetes-based Framework for Improving Traffic Light Recognition Performance: Convergence Vision AI System based on YOLOv5 and C-RNN with Visual Attention (신호등 인식 성능 향상을 위한 쿠버네티스 기반의 프레임워크: YOLOv5와 Visual Attention을 적용한 C-RNN의 융합 Vision AI 시스템)

  • Cho, Hyoung-Seo;Lee, Min-Jung;Han, Yeon-Jee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.851-853
    • /
    • 2022
  • 고령화로 인해 65세 이상 운전자가 급증하며 고령운전자의 교통사고 비율이 증가함에 따라 시급한 사회 문제로 떠오르고 있다. 이에 본 연구에서는 객체 검출, 인식 모델을 결합하고 신호등을 인식하여 Text-To-Speech(TTS)로 알리는 쿠버네티스 기반의 프레임워크를 제안한다. 객체 검출 단계에서는 YOLOv5 모델들의 성능을 비교하여 활용하였으며 객체 인식 단계에서는 C-RNN 기반의 attention-OCR 모델을 활용하였다. 이는 신호등의 내부 LED 영역이 아닌 이미지 전체를 인식하는 방식으로 오탐지 요소를 낮춰 인식률을 높였다. 결과적으로 1,628장의 테스트 데이터에서 accuracy 0.997, F1-score 0.991의 성능 평가를 얻어 제안한 프레임워크의 타당성을 입증하였다. 본 연구는 후속 연구에서 특정 도메인에 딥러닝 모델을 한정하지 않고 다양한 분야의 모델을 접목할 수 있도록 하며 고령 운전자 및 신호 위반으로 인한 교통사고 문제를 예방할 수 있다.

A Study on the Impact of AI Edge Computing Technology on Reducing Traffic Accidents at Non-signalized Intersections on Residential Road (이면도로 비신호교차로에서 AI 기반 엣지컴퓨팅 기술이 교통사고 감소에 미치는 영향에 관한 연구)

  • Young-Gyu Jang;Gyeong-Seok Kim;Hye-Weon Kim;Won-Ho Cho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.79-88
    • /
    • 2024
  • We used actual field data to analyze from a traffic engineering perspective how AI and edge computing technologies affect the reduction of traffic accidents. By providing object information from 20m behind with AI object recognition, the driver secures a response time of about 3.6 seconds, and with edge technology, information is displayed in 0.5 to 0.8 seconds, giving the driver time to respond to intersection situations. In addition, it was analyzed that stopping before entering the intersection is possible when speed is controlled at 11-12km at the 10m point of the intersection approach and 20km/h at the 20m point. As a result, it was shown that traffic accidents can be reduced when the high object recognition rate of AI technology, provision of real-time information by edge technology, and the appropriate speed management at intersection approaches are executed simultaneously.

A Study on Methods for Accelerating Sea Object Detection in Smart Aids to Navigation System (스마트 항로표지 시스템에서 해상 객체 감지 가속화를 위한 방법에 관한 연구)

  • Jeon, Ho-Seok;Song, Hyun-hak;Kwon, Ki-Won;Kim, Young-Jin;Im, Tae-Ho
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.47-58
    • /
    • 2022
  • In recent years, navigation aids, which plays as sea traffic lights, have been digitized, and are developing beyond simple sign purpose to provide various functions such as marine information collection, supervision, control, etc. For example, Busan Port which is located in South Korea is leading the application of the advanced technologies by installing cameras on buoys and recording video images to supervise maritime accidents. However, there are difficulties to perform their major functions since the advanced technologies require long-term battery operation and also management and maintenance of them are hampered by marine characteristics. This study proposes a system that can automatically notify maritime objects passing around buoys by analyzing image information. In the existing sensor-based accident prevention systems, the alarms are generated by a collision detection sensor. The system can identify the cause of the accident whilst even though it is difficult not possible to fundamentally prevent the accidents. Therefore, in order to overcome these limitations, the proposed a maritime object detection system is based on marine characteristics. The experiments demonstrate that the proposed system shows about 5 times faster processing speed than other existing algorithms.

Safety helmet wearing detection and notification system for construction site (공사현장 안전모 미착용 감지 및 알림 시스템)

  • Joong-Geun Seok;Mu-gyeong Gong;Min-Seok Kim;Dong-hyeon Heo;Jae-won Koo;Tae-jin Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.291-292
    • /
    • 2024
  • 국내의 산재 사고 사망 비율 중 대부분은 건설업이 차지하고 있으며 사망 원인 중 42.9%는 추락사가 차지하고 있다. 따라서 국내 사고 사망을 예방하기 위해서는 노동자의 생명을 지켜주는 안전 장비의 착용 여부가 중요하다. 본 논문에서는 객체 탐지에 사용되는 YOLO v4와 YOLO v4-TINY 알고리즘과 영상 처리에 사용되는 OpenCV를 이용하여 실시간 영상에서 안전모 미착용 인원을 감지하고 관리자에게 알려주는 시스템을 개발하였다. 이 시스템을 활용하여 건설 현장에서 현장 카메라로 안전모 미착용 인원을 실시간으로 검출하여 경고하므로써 작업자의 안전에 기여할 수 있다.

  • PDF

Measuring the degree of congestion by the density of edge pixels (Edge Pixels의 밀도에 의한 혼잡도 측정)

  • Yang, Jun-Chul;Kim, Hee-Sung
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.823-825
    • /
    • 2005
  • 컴퓨터 비전 연구에서의 주요 관심은 객체의 특징을 이용하여 객체를 분간하거나 또는 계수하는데 있어 왔다. 최근 대단위의 사람들이 운집하는 공공장소에서의 사고에 대비한 대책의 기준으로 혼잡도라는 점보의 중요성이 대두되고 있다. 본 실험에서는 객체들이 존재하는 전경(Foreground) 영역을 객체들이 없는 배경 영역(back ground)으로부터 분리한 후 전경 영역에서의 edge pixel 들의 수를 계수하여 혼잡도의 정도를 구한다. 전경 영역과 배경 영역은 소 영역별로 RGB에 대한 표준편차와 평균을 비교 분석해서 구분하고 배경 영역을 삭제한다. 전경 영역에서 edge detection 방법을 이용하여 환경에 알맞은 edge pixels수를 계수하고 pixels수와 혼잡도 사이의 관계를 구한다. 이러한 측정 방법의 장점은 다양한 환경에서도 혼잡도라는 기본 특징정보를 추출할 수 있다는 것이다.

  • PDF

Cylinder-based Angular Interpolation to Efficiently Feature Point Matching in AR Environment (AR환경에서 특징 포인트를 효율적으로 매칭하기 위한 실린더 기반의 각도 보간)

  • Moon, YeRin;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.365-368
    • /
    • 2022
  • 본 논문에서는 가상 물체를 현실과 오차 없이 정확하게 증강 시켜야 하는 상황에서 특징 포인트를 이용하여 효율적으로 매칭하기 위한 실린더 기반의 각도 보간 기법을 제안한다. 증강현실에서 활용되는 대표적인 객체를 증강하는 방법은 특징 포인트들을 트래킹하여 찾아낸 후, RANSAC 알고리즘을 기반으로 포인트 셋에서 바닥, 벽과 같이 하나의 평면을 구성하고 그 위에 객체를 증강한다. 이 방법은 평면을 이용하기 때문에 계산량이 적지만, 증강 위치에 대한 오차가 존재하기 때문에 때때로 잘못된 위치에 객체가 배치되는 경우가 발생한다. 특히, 의료시설, 도로 공사에서 증강 현실을 사용했을 때에 증강된 가상물체의 위치, 크기 등이 현실에서 작은 오차라도 어긋날 경우 크게 사고가 발생할 수 있다. 본 논문에서는 평면 생성 없이 특징 포인트만을 이용하여 효율적으로 매칭 할 수 있는 실린더 기반의 각도 보간을 이용하여 정확하게 객체를 증강할 수 있는 결과를 보여준다.

  • PDF