• Title/Summary/Keyword: 사각형 탱크

Search Result 21, Processing Time 0.02 seconds

Nonlinear Analysis of Sloshing in Rectangular Tanks by Perturbation Approach (섭동법을 사용한 사각형 유체저장 탱크의 비선형 유동해석)

  • 전영선;윤정방
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.55-64
    • /
    • 2002
  • For nonlinear analysis of sloshing of fluid in rectangular tanks, a new method using the perturbation approach is presented. The results by presented method show good agreement with results in previous study. The importance of nonlinear sloshing analysis is demonstrated by comparing nonlinear behaviors of sloshing in broad and tall tanks with different site conditions. In general, the results by nonlinear analysis are greater than those by linear analysis. Specially, the nonlinear behavior is significant in softer soil site and broad tank. Therefore, nonlinear behavior analysis has to be considered in the design of large liquid storage tanks.

Effects of a Submerged Block on the Sloshing of a Fluid in Rectangular Tanks (수중블럭이 사각형탱크의 자유수면 유동에 미치는 영향)

  • Choun, Young-Sun;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.191-200
    • /
    • 1994
  • 사각형 유체저장탱크의 바닥에 놓여져 있는 사각형 블럭의 크기 및 위치가 자유수면의 유동진동수와 모드형상에 미치는 영향에 대하여 선형파이론을 적용하여 검토하였다. 유체의 영역을 3부분으로 나누고 각 영역에서의 속도포텐셜을 입사파와 블럭으로 인해 발생되는 반사파 및 전달파의 항으로써 표현하였다. 그리고 블럭에 의한 파의 반사율과 전달율은 유체영역의 경계에서 속도포텐셜과 유체입자의 속도가 연속인 조건을 사용하여 구하였다. 연구결과 블럭의 높이와 폭은 자유수면의 고유진동수에 크게 영향을 미치며 높이와 위치는 모드형상에 주로 영향을 준다. 블럭이 높고 폭이 넓을수록 고유 진동수는 감소하며 블럭이 높고 탱크의 벽면으로 이동할수록 모드형상은 크게 변한다.

  • PDF

A Study on the Sloshing of the Rectangular Tank Partially Filled with Fluid Under Translational Motion (병진운동하는 사각형 유체저장탱크 내부의 슬로싱 특성 연구)

  • 이영신;김현수;이재형;고성호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.591-597
    • /
    • 2003
  • The oscillation of the fluid caused by external motions is called sloshing, which occurs in moving vehicles with contained fluid masses, such as the oil tankers, railroad cars, aircraft and rockets. Natural frequencies of fluid are much lower than that of solid structures, and the deformation caused by the excitation that is less than 1st natural frequency of fluid is very large. For the reason of that, sloshing characteristics under the ekcitation that is less than the 1st natural frequency must be studied prior to the consideration of natural frequencies of fluid. The experimental devices are constructed to simulate the translation motion. The rectangular tanks are made to study the sloshing characteristics under external excitation. The changes of water height are measured using an analogue camcorder and MPEG board, and those are compared to each other through a standard deviation. From the results of experiments, the sloshing is greatly influenced by the length of the rectangular tank than the width of that under the periodic translational motion in the length direction. The rapid amplification of sloshing by resonance is also confirmed experimentally.

Analysis of Sloshing Problem by Numerical Method (수치기법을 이용한 Sloshing 문제의 해석)

  • Y.H. Kim;Y.J. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.33-44
    • /
    • 1992
  • In the present paper, three types of analytic and numerical method are applied to the analysis of sloshing problem. Analytic solution with linear free-surface boundary condition is introduced and numerical methods are used to analyze flued flow trapped in two-and three-dimensional tanks. Source-distribution method is applied to two- and three-dimensional rectangular tanks and sphere tank. Finite difference method is utilized to compute fluid motion and pressure evolution in two dimensional tanks with girders or slopes. Calculated results are compared with those of experiment or other numerical techniques.

  • PDF

Analysis of Sloshing Frequency Response in Rectangular Fuel-Storage Tank (사각형 연료탱크 내 슬로싱 주파수 응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.95-104
    • /
    • 2003
  • This paper deals with the analytic and FEM analyses of sloshing frequency response of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use Laplace equation based on potential theory as governing equation. For small amplitude sloshing motion, the linearized free surface condition was applied and the analytic solution as obtained by the separation of variables. To simulate the effect of the energy dissipation due to viscous damping, artificial viscous coefficient is introduced and the divergence of response at resonance frequencies may be avoided by this coefficient. This problem was solved by FEM using 9-node elements in order to predict the maximum amplitude of sloshing response. Numerical results of free surface height, fluid pressure and fluid force show good agreement with those by analytic solution. After verifying the test FEM program, we analyze the frequency response characteristics of sloshing to the fluid height.

Fluid Flow Characteristics for Minimizing the Area of Rapid Flow Inside the Water Tank to which the Multiple Hoe Screw Nozzle Incurrent Canal is Applied, by Using the Computational Fluid Dynamics (CFD) Simulation (전산유체해석(CFD) 모의를 이용한 다공형 스크류 노즐 입수관이 적용된 물탱크 내부의 사류구역 최소화에 대한 유동특성)

  • Song, Jun-Hyuck;Kwon, Jong-Woo;Choi, Jong-Woong;Wang, Chang-Keun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.23-33
    • /
    • 2015
  • This study was carried out for the purpose of minimizing the area of rapid flow inside the water tank. And the shape of incurrent canal was improved, and then the characteristics of fluid flow occurring inside the water tank was analyzed by using the Computational Fluid Dynamics (CFD) simulation method. better multiple hoe screw nozzle incurrent canal was used instead of conventional drop current canal used for the water tank. And according to the results of analyzing the characteristics of fluid flow, in case a screw blade was installed inside the nozzle, fluid flow was sprayed wide. And wide fluid flow was shown inside the cylindrical water tank too. Besides, a tracer simulation was carried out, in case of installing 1 and 2 multiple hoe screw nozzle incurrent canals at the cubic water tank. As a result, MODAL, MODAL index value was close to 1, in case of installing 2 canals. Therefore, it was possible to obtain the results of being close to the characteristics of plug flow.

Finite Element Stress Analysis of Large Sized Rectangular Water Tank Structures Made of Stainless Steel Materials (대용량 스테인리스 강재 사각형 물탱크 구조의 유한요소 응력해석)

  • Son, Byung-Jik;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.85-90
    • /
    • 2015
  • The finite element stress analysis of large sized rectangular water tank structures made of stainless steel materials is carried out for various combined load cases. The combined load cases for a large size of 5,000ton are further determined using the specification(KS B6283) established from the Korean Standards Association. The changed water capacity due to the size of reservoirs could be heavily dependent for evaluating seismic effects, especially for large reservoirs. For the better numerical efficiency, the rectangular panels are modelled using the ANSYS ADPL module. The numerical results obtained for different load cases mainly show the effect of the interactions between the different load combination and other various parameters, for example, the water capacity, and different stainless steel materials. The structural performance for various load combinations is also evaluated.

Structural Analysis for Design Improvement of Stainless 5,000ton Rectangular Water Tank Structures (5,000톤급 스테인리스 사각형 물탱크 구조의 설계 개선을 위한 구조해석)

  • Son, Byung-Jik;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.44-50
    • /
    • 2015
  • The finite element analysis of large sized rectangular water tank structures made of stainless steel materials is carried out for various combined load cases. The combined load cases for a large size of 5,000ton are further determined using the specification(KS B 6283) established from the Korean Standards Association. For the better numerical efficiency, the rectangular panels are modelled using the ANSYS program. The numerical results obtained for different load cases show as follows. In order to resist the snow load, it takes the influence of the gap than the size of the column. Also, in order to resist the water pressure, it shall increase the thickness of the wall. But, increasing the thickness of the wall is considerably less economical. Therefore, the angle with big thickness should be placed right next to the wall.