• Title/Summary/Keyword: 빔 집속

Search Result 219, Processing Time 0.034 seconds

Property of Focal Spot of Electron Beam Depending on the Anode Angle of X-ray Tube Using a Finite Element Method (유한요소법을 이용한 X-선관 양극각도에 의존하는 전자빔 초점 특성 연구)

  • Park, Tae-Young;Noh, Young-Il;Lee, Sang-Suk;Park, Rae-Jun;Kim, Ki-Seon
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • The focal spot of electron beam depending on the anode angle in the structure and major parts of the X-ray tube was investigated by the OPERA-3D/SCALAR simulation program. The simulation worked on four spaces with with two spaces, including anode and cathode of X-ray tube, by applying the finite element method analysis. The analytical model and dimension for the emission orbit of thermal electrons made from one filament of the focused X-ray cathode is affected to the penumbra of detector for the X-ray depending on any real focal spot size. The model shape of focusing cap and focusing tube with an anode target angle and a cathode filament is analyzed by the current density distribution of thermal electrons. The focusing width of thermal electrons for the X-ray tube depended on the anode angle (${\theta}$). The focusing value of electron beams at a region of anode angle having $10^{\circ}{\sim}17^{\circ}$ maintained to below value of $70{\mu}m$. The minimum focal size of the electron beam was $40{\mu}m$ at an anode angle of $15^{\circ}$. The focused X-ray tube of many variables depended on the thermionic emission of hot electrons from the target trajectory. The focusing tube will contribute to the real design of X-ray for the development of future diagnosis medical device.

Improvement of the Radiation Beam Profile of a Medical Ultrasonic Transducer (의료용 초음파 트랜스듀서의 방사 빔 형상 개선)

  • Park, Yeonsue;Lee, Wonseok;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.264-273
    • /
    • 2015
  • Improvement of the radiation beam profile of a medical ultrasonic transducer has been researched in this paper. In order to improve the beam profile, a new transducer structure has been devised that includes both a shaded electrode and a multi-focus lens. For a linear sound source, the beam profile was investigated through finite element analysis, and then the optimal design of the devised structure was carried out by considering such performances as sidelobe level, focal range and beamwidth simultaneously. In the process, the optimal dimension of the devised structure was derived by using the ratio of the focal range to the minimum beamwidth as a performance index. As a result, the beam profile has been improved to have a lower sidelobe level at -20.2 dB and a consistent narrow beamwidth from 30 mm to 160 mm depth with the minimum beamwidth at 2.04 mm. Further, a prototype transducer was fabricated to have the devised structure, and its performance was measured and compared with the analysis results to confirm the validity of the devised transducer structure.

Focused Ion Beam Milling for Nanostencil Lithography (나노스텐실 제작을 위한 집속이온빔 밀링 특성)

  • Kim, Gyu-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.245-250
    • /
    • 2011
  • A high-resolution shadow mask, a nanostencil, is widely used for high resolution lithography. This high-resolution shadowmask is often fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. In this study, FIB milling on 500-nm-thin SiN membrane was tested and characterized. 500 nm thick and $2{\times}2$ mm large membranes were made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 60 nm could be made into the membrane. The nanostencil could be used for nanoscale patterning by local deposition through the apertures.

The ocused Ion Beam Etching Characteristic of Au (집속 이온빔 가공변수에 따른 Au 에칭 특성 연구)

  • Park, J.J.;Kim, S.D.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.129-133
    • /
    • 2007
  • Focused Ion Beam(FIB) systems is a useful tool for the fabrication of micro-nano scale structures. In this study, the effects of FIB etching on the Au microstructure are systematically investigated. As the fabrication parameters, ion dose, dwell time and beam overlap ratio are studied. First, the increases of Ga ion dose makes the milling yield higher and the sidewall of milling profile steeper. Dwell time is found to have little effects on the milling profile due to the relatively large milling area of $1\times1{\mu}m^2$ used in this study. However, beam overlap significantly affects not only milling rate but also milling profile. As the beam overlap ratio changes from positive to negative, the development of regular cross-stripe patterns at the bottom with low milling rate is observed.

Optimal Design for the Increment of Ion Current in Spherically Convergent Beam Fusion Device (이온전류 증대를 위한 구형 집속 빔 핵융합 장치의 최적 설계)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hui-Dong;Park, Jeong-Ho;Choi, Seung-Kil;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1366-1367
    • /
    • 2008
  • 구형 집속 빔 핵융합 장치에서 발생되는 중성자 생성률은 이온전류의 크기에 크게 의존한다. 본 논문에서는 이온전류의 크기를 증가시키기 위해 구조 설계에 주로 이용되는 다구찌 실험계획법을 이용하여 최적의 설계 조건을 계산하였다. 최적화를 위해 그리드 음극 형상의 결정인자 및 압력을 설계 변수로 선택하였고, 설계변수가 이온전류의 크기에 미치는 영향력을 분석하여 최적의 조건을 도출하였으며, 예측된 최적 조건 변수값을 적용하여 효과를 검증하였다. 최적 모델로부터 더 큰 이온전류를 얻을 수 있었으며, 이는 더 깊은 포텐셜 우물에서 측정되었다.

  • PDF

Development of Focused Ion Beam Column Using Ga Source (갈륨 소스를 이용한 집속이온빔 컬럼 개발)

  • Gim, Tzang-Jo;Lee, Jae-Seung;Choi, Yoon;Choi, Eun-Ha;Park, Chul-Woo;Kim, Jong-Kuk;Kim, Young-Gweon;Um, Chang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.185-189
    • /
    • 2009
  • Focused ion beam system was designed, which includes LMIS, electrostatic lens and high voltage power supply. Control program is updated for high speed image processing. The details of vibration-free vacuum system and other important electrical parts were trouble-shooted for appropriately controlling high acceleration voltages.

Analysis on FIB-Sputtering Process using Taguchi Method (다구찌 기법을 이용한 FIB-Sputtering 가공 특성 분석)

  • Lee, Seok-Woo;Choi, Byoung-Yeol;Kang, Eun-Goo;Hong, Won-Pyo;Choi, Hon-Zong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.71-75
    • /
    • 2006
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. The target of this paper is the analysis of FIB sputtering process according to tilt angle, dwell time and overlap for application of 3D micro and pattern fabrication and to find the effective beam scanning conditions using Taguchi method. Therefore we make the conclusions that tilt angle is dominant parameter for sputtering yield. Burr size is reduced as tilt angle is higher.

Fabrication of Electrostatically Actuated Nano Tweezers Using FIB(Focused Ion Beam) (집속이온빔 장치를 이용한 정전기 구동 나노트위저의 제작)

  • Chang Ji-Young;Kim Jong-Baeg;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.495-496
    • /
    • 2006
  • Electrostatically actuated nanoscale tweezers are fabricated on micro processed electrodes using FIB-CVD. Heavily doped electrode works as interconnection platform for controlling nanoscale devices. Short bent pillars are deposited to control the gap distance of main tweezers fabricated on bent ones. Two types of tweezers which have different gap distances are fabricated and tweezing motion was successfully demonstrated. The threshold voltages at snap-down of the pillars are dependent on the initial gap distance of the unactuated pillars, and the measured values were 93V for 3.6um and 30V for 2.2um. The dimension of nano tweezers and initial gap distances are controllable as demonstrated and we expect more complicated 3-dimensional shapes are also possible.

  • PDF

Performance Experiment of Electron Beam Convergence Instrument (Finishing 용 전자빔 집속 장치의 성능 실험)

  • Lim, Sun Jong
    • Laser Solutions
    • /
    • v.18 no.3
    • /
    • pp.6-8
    • /
    • 2015
  • Finishing process includes deburring, polishing and edge radiusing. It improves the surface profile of specimen and eliminates the alien substance on surface. Deburring is the elimination process for debris of edges. Polishing lubricates surfaces by rubbing or chemical treatment. There are two types for electron finishing. The one is using pulse beam. The other is using the convergent and scanning electron beam. Pulse type device appropriates the large area process. But it does not control the beam dosage. Scanning type device has advantages for dosage control and edge deburring. We design the convergence and scan type. It has magnetic lenses for convergence and scan device for scanning beam. Magnetic lenses consist of convergent and objective lens. The lenses are designed by the specification(beam size and working distance). In this paper, we evaluate the convergence performance by pattern process. Also, we analysis the results and important factors for process. The important factors for process are beam size, pressure, stage speed and vacuum. These results will be utilized into systematizing pattern shape and the factors.

An Improvement of the Lateral Resolution of Linear Array Transducer for Medical Ultrasonic Imaging (의료 진단용 선형 배열 변화기의 측 방향 해상도 개선)

  • 백승한
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.136-141
    • /
    • 1991
  • 초음파 영상 진단기에서 영상의 질을 높이기 위해서는 넓은 범우에서 높은 측 방향 해상도가 요구된다. 측 방향 해상도는 변환기에 의해 발생되는 초음파 빔폭에 의해 좌우되는데 기존의 변환기는 초점 부근에서는 빔폭이 매우 좁으나 집속 범위가 제한되는 단점이 있다. 본 논문에서는 넓은 범위에서 균일한 빔폭을 얻을 수 있는 새로운 형태의 변환기를 제안하고 변환기에 의한 음장 분포를 전산기 모의 실험을 통해 구하였으며 그 결과 초점 부근에서는 빔 폭이 기존의 변환기에 비해 다소 넓어지나 집속 범위가 기존의 변화기에 비해 넓어지는 것을 확인할 수 있었다.

  • PDF