• Title/Summary/Keyword: 빔형성기법

Search Result 109, Processing Time 0.018 seconds

A structure and signal processing of directional linear array for left/right discrimination in low frequency band (저주파 대역에서 좌/우 구분이 가능한 지향성배열센서 구조 및 신호처리 기법)

  • Kim, Dae-Kyung;Bae, Eun-Hyon;Jeon, Sang-Tae;Kim, Tae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.4
    • /
    • pp.188-195
    • /
    • 2018
  • A new directional linear array structure and its signal processing method are presented to resolve the left/right ambiguity inherent in a linear array. The array structure combines an ordinary acoustic sensor array with a DIFAR (Directional Frequency Analysis and Recording) sensor array, keeping a linear array configuration and gaining a instantaneous left/right discrimination. It presents better PSRR (Port-Starboard Rejection Ratio) in low frequency band and low SNR (Signal to Noise Ratio) situation as compared with a conventional twin linear array, and good compromise to easily upgrade an existing linear array system to a new one with a left/right discrimination capability.

Compensation Algorithm of Beamforming Error for Wideband Conformal Array Antenna (광대역 컨포멀 위상 배열 안테나의 빔형성 열화 보상 알고리즘)

  • Yoon, Ho-Joon;Lee, Kang-In;Nam, Sang-Wook;Chung, Young-Seek;Yoon, Young-Joong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.6
    • /
    • pp.478-486
    • /
    • 2017
  • In this paper, we propose an algorithm for the wideband beamforming in a conformal phased array antenna by compensating the errors. For the wideband beamforming, we used the True Time Delay(TTD), which was fabricated on the RF circuit board to obtain long delay lines. Beamforming errors in the conformal array antenna are the mutual coupling between the array elements, the dispersive error in the TTD circuit, and the quantization error by the digital control. We apply the compensation algorithm to the conformal phased array antenna of wideband 2~4 GHz, and verify the usefulness by comparing the results with the experiment results.

Coordinated Beamforming Systems with Channel Prediction in Time-varying MIMO Broadcast Channel (시변 다중입출력 방송 채널을 위한 채널예측이 적용된 협력 빔형성 시스템)

  • Kim, Jin;Kang, Jin-Whan;Kim, Sang-Hyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.302-308
    • /
    • 2011
  • In this paper we propose a coordinated beamforming(CBF) scheme considering the effects of feedback quantization and delay in time-varying multiple-input multiple-output(MIMO) broadcast channels. By equal power allocation per data stream, the proposed CBF scheme transmits multiple data streams per user terminals without additional feedback overhead when quantized feedback information is used. The proposed CBF scheme also applies a linear channel predictor to each user terminals to prevent errors due to feedback delays that are not evitable in practical wireless systems. Each user terminal utilizes Wiener filter to predict future channel responses and generates feedback information based on the predicted channels. Consequently the proposed CBF scheme adapting Wiener filter improves system performances compared with the conventional scheme using delayed feedback.

Functional beamforming for high-resolution ultrasound imaging in the air with random sparse array transducer (고해상도 공기중 초음파 영상을 위한 기능성 빔형성법 적용)

  • Choon-Su Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • Ultrasound in the air is widely used in industry as a measurement technique to prevent abnormalities in the machinery. Recently, the use of airborne ultrasound imaging techniques, which can find the location of abnormalities using an array transducers, is increasing. A beamforming method that uses the phase difference for each sensor is used to visualize the location of the ultrasonic sound source. We exploit a random sparse ultrasonic array and obtain beamforming power distribution on the source in a certain distance away from the array. Conventional beamforming methods inevitably have limited spatial resolution depending on the number of sensors used and the aperture size. A high-resolution ultrasound imaging technique was implemented by applying functional beamforming as a method to overcome the geometric constraints of the array. The functional beamforming method can be expressed as a generalized beam forming method mathematically, and has the advantage of being able to obtain high-resolution imaging by reducing main-lobe width and side lobes. As a result of observation through computer simulation, it was verified that the resolution of the ultrasonic source in the air was successfully increased by functional beamforming using the ultrasonic sparse array.

Weighted polynomial fitting method for estimating shape of acoustic sensor array (음향 센서 배열 형상 추정을 위한 가중 다항 근사화 기법)

  • Kim, Dong Gwan;Kim, Yong Guk;Choi, Chang-ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.255-262
    • /
    • 2020
  • In modern passive sonar systems, a towed array sensor is used to minimize the effects of own ship noise and to get a higher SNR. The thin and long towed array sensor can be guided in a non-linear form according to the maneuvering of tow-ship. If this change of the array shape is not considered, the performance of beamformer may deteriorate. In order to properly beamform the elements in the array, an accurate estimate of the array shape is required. Various techniques exist for estimating the shape of the linear array. In the case of a method using a heading sensor, the estimation performance may be degraded due to the effect of heading sensor noise. As means of removing this potential error, weighted polynomial fitting technique for estimating array shape is developed here. In order to evaluate the performance of proposed method, we conducted computer simulation. From the experiments, it was confirmed that the proposed method is more robust to noise than the conventional method.

A Study on the Linear Array Beamforming by Spatial Cross Correlation Matrix (공간 상호상관 행렬을 이용한 선배열 빔형성 기법 연구)

  • Hwang Soo-Bok;Lee Sung-Eun
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.177-180
    • /
    • 2000
  • 소나 시스템에서는 신호 대 잡음비의 향상, 표적의 방위탐지 및 위치 데이터 산출, 간섭신호 제거 등을 위하여 지향성 빔을 만들어 사용한다. 본 논문에서는 선형으로 배열된 센서에서 각 센서쌍들에 대한 상호상관 행렬을 이용한 SCCBF(Spatial Cross Correlation Beamformer) 알고리즘을 제안하였다 이상적인 조건하에서 제안된 SCCBF는 CBF(Conventional Beamformer)에 비해 3dB의 Array Gain을 갖는 것을 이론적으로 검증하고 표적의 탐지 방위정확도를 나타내는 빔폭(Beam Width)이 CBF 보다 0.5배정도가 됨을 검증하고 모의실험을 통하여 이를 입증하였다.

  • PDF

Array Resolution Improving Methods for Beamforming Algorithm (빔형성방법에서의 분해능 향상 기법에 관한 연구)

  • Hwang, Seon-Gil;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.164-169
    • /
    • 2005
  • Microphone array techniques are being used widely in wind tunnel measurements for identification of the distributed aerodynamic noise sources on the model being tested. Depending on the frequencies and sound levels, conventional beamforming algorithm has limitation in separating two adjacent sources. Several modifications to the classical beamforming have been developed to enhance way resolution and reduce sidelobe levels. In this Paper the robust adaptive beamforming and the CLEAN algorithm are used to compare to the result of conventional beamforming method. It is found that the CLEAN algorithm is capable of pin-pointing locations of multiple sources nearby, while these sources are unidentifiable with robust adaptive or conventional beamforming techniques.

  • PDF

Speech Enhancement Using LLA Microphones Based on Complementary Beamforming (상보적인 빔형성에 기반한 대수적 마이크로폰 배열을 이용한 음성개선)

  • Jang Byung Wook;Kwon Hong Seok;Kim Si Ho;Bae Keun Sung
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.113-116
    • /
    • 2001
  • 본 연구에서는 상보적인 빔형성에 기반한 대수적 마이크로폰 배열을 이용한 음성개선 시스템을 제안한다. 사람들이 많이 모여있는 회의실이나 사무실 환경에서는 백색잡음 보다 음성잡음, 즉, 다른 화자의 음성신호가 더 큰 영향력을 가질 수 있다. 따라서 대수적인 마이크로폰 배열을 사용함으로써 기존의 빔형성 기법에 비하여 저주파 영역에서의 성능을 향상시키고자 하였다. 모의실험 결과, 백색 가우시안 잡음에 대해서는 별다른 성능저하 없이 저주파 성분이 강한 음성잡음에 대해서는 우수한 성능을 가짐을 알 수 있었다.

  • PDF

Beam Stabilization Beamforming Technique for Hull-Mounted Sonar Performance Enhancement (선저고정형 소나의 탐지성능 향상을 위한 빔 안정화 빔형성 기법)

  • Ryu, Young-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.129-137
    • /
    • 2008
  • Hull-Mounted Sonar(HMS) has been the main equipment to detect and track underwater threats like torpedoes and enemy submarines. The HMS has short warming-up time and is employable independently with sea-state and weather condition. But these bad environmental condition and ship maneuvering make ship's roll and pitch. Ship's roll and pitch make unstability of sensor position, then cause degradation of the HMS performance. In this paper, we will show how the unstability influences the HMS performance, propose the 'Beam Stabilization Beamforming Technique' to overcome these phenomenon. And present the effectiveness of proposed technique by comparing with conventional beamforming result.

Performance improvement of underwater target distance estimation using blind deconvolution and time of arrival method (블라인드 디컨볼루션 및 time of arrival 기법을 이용한 수중 표적 거리 추정 성능 향상 기법)

  • Han, Min Su;Choi, Jea Young;Son, Kweon;Lee, Phil Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.6
    • /
    • pp.378-386
    • /
    • 2017
  • Accurate distance measurement between maneuver target in underwater and measuring devices is required to perform quantitative test evaluation in marine weapons system R&D process. In general, the target distance is measured using a one-way ToA (Time of Arrival) method that calculates the time difference between transmitted and received signals from the two accurately synchronized devices. However, the distance estimation performance is degraded because of the multi-path environments. In this paper, the time-variant transfer function of complex underwater environment is estimated from each received data frame using RBD (Ray-based Blind Deconvolution), and the estimated time-variant transfer function is then used to get rid of the effect about complex underwater environment and to recover the data signal using PTRM (Passive Time Reversal Mirror). The result from the simulation and experimental data show that the suggested method improve the distance estimation performance when comparing with the conventional ToA method.