DOI QR코드

DOI QR Code

A structure and signal processing of directional linear array for left/right discrimination in low frequency band

저주파 대역에서 좌/우 구분이 가능한 지향성배열센서 구조 및 신호처리 기법

  • Received : 2018.06.08
  • Accepted : 2018.07.27
  • Published : 2018.07.31

Abstract

A new directional linear array structure and its signal processing method are presented to resolve the left/right ambiguity inherent in a linear array. The array structure combines an ordinary acoustic sensor array with a DIFAR (Directional Frequency Analysis and Recording) sensor array, keeping a linear array configuration and gaining a instantaneous left/right discrimination. It presents better PSRR (Port-Starboard Rejection Ratio) in low frequency band and low SNR (Signal to Noise Ratio) situation as compared with a conventional twin linear array, and good compromise to easily upgrade an existing linear array system to a new one with a left/right discrimination capability.

본 논문은 기존 선배열센서에서 발생하는 좌/우 구분 모호성을 해결하기 위해 저주파 대역에서 좌/우 구분이 가능한 지향성배열센서 구조 및 신호처리 방안을 제안한다. 지향성배열센서는 기존 음향배열센서에 지향성을 가지는 DIFAR(Directional Frequency Analysis and Recording)배열센서를 추가 확장한 선배열센서 구조이며, 음향배열센서의 빔형성 결과와 DIFAR배열센서의 빔형성 결과를 융합/처리하는 신호처리 구조를 가진다. 이러한 지향성배열센서는 좌/우 구분이 가능한 기존의 이중 선배열센서와 비교하여 낮은 신호 대 잡음비 및 저주파수 대역에서 높은 좌/우 구분 성능을 나타낸다.

Keywords

References

  1. R. O. Nielsen, Sonar Signal Processing (Norwood, MA:Artech House, 1991), pp. 51-94.
  2. G. C. Carter, "Time delay estimation for passive sonar signal processing," IEEE Trans. Acoust., Speech, Signal processing, 29, 463-470 (1981). https://doi.org/10.1109/TASSP.1981.1163560
  3. T. Warhonowicz, H. Schmidt-Schierhorn, and H. Hostermann, "Port/Starboard discrimination performance by twin line array for a LFAS sonar system," Proc. UDT, Europe, 398 (1999).
  4. G. W. M. van Mierlo, S. P. Beerens, R. Been, Y. Doisy, and E. Trouve, "Port-Starboard discrimination on hydrophone triplets in active and passive towed arrays," Proc. UDT, Pacific, 63-68 (2000).
  5. I. S. Yang, K. M. Kim, D. H. Youn, W. T. Oh, and K. C. Dho, "Synthetic aperture processing in beamspace using twin-line array" (In Korean), J. Acoust. Soc. Kr. 20, 82-86 (2001).
  6. G. Haralabus and A. Baldacci, "Unambiguous triplet array beamforming and calibration algorithms to facilitate an environmentally adaptive active sonar concept," OCEANS 2006, 1-6 (2006).
  7. A. Nehorai and E. Paldi, "Acoustic vector sensor array processing," IEEE Trans. Signal Process, 42, 2481-2491 (1994). https://doi.org/10.1109/78.317869
  8. K. B. Smith, R. T. Richards, and P. Duckett, "Comparative beamforming studies employing acoustic vector sensor data," J. Acoust. Soc. Am. 119, 3446 (2006).
  9. C. R. Greene, Jr., M. W. McLennan, R. G. Norman, T. L. McDonald, R. S. Jakubczak, and W. J. Richardson, "Directional frequency and recording (DIFAR) sensors in seafloor recorders to locate calling bowhead whales during their fall migration," J. Acoust. Soc. Am. 116, 799-813 (2004). https://doi.org/10.1121/1.1765191
  10. D. H. Chang, H. B. Park, Y. N. Na, and J. H. Ryu, "Bearing estimation of narrow band acoustic signals using cardioid beamforming algorithm in shallow water," J. Acoust. Soc. Kr. 21, 71-78 (2002).
  11. K. C. Shin and J. S. Kim, "Adaptive beamforming applied to bearing estimation of DIFAR signal with highly directional noise" (in Korean), J. Acoust. Soc. Kr. 34, 474-481 (2011).
  12. J. Groen, S. P. Beerens, and R. Been, "Adaptive port-starboard beamforming of triplet sonar arrays," IEEE J. Ocean. Eng. 30, 348-359 (2005). https://doi.org/10.1109/JOE.2005.850880