• Title/Summary/Keyword: 빈발구조추출

Search Result 20, Processing Time 0.033 seconds

An Efficient Method for Mining Frequent Patterns based on Weighted Support over Data Streams (데이터 스트림에서 가중치 지지도 기반 빈발 패턴 추출 방법)

  • Kim, Young-Hee;Kim, Won-Young;Kim, Ung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1998-2004
    • /
    • 2009
  • Recently, due to technical developments of various storage devices and networks, the amount of data increases rapidly. The large volume of data streams poses unique space and time constraints on the data mining process. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Most of the researches based on the support are concerned with the frequent itemsets, but ignore the infrequent itemsets even if it is crucial. In this paper, we propose an efficient method WSFI-Mine(Weighted Support Frequent Itemsets Mine) to mine all frequent itemsets by one scan from the data stream. This method can discover the closed frequent itemsets using DCT(Data Stream Closed Pattern Tree). We compare the performance of our algorithm with DSM-FI and THUI-Mine, under different minimum supports. As results show that WSFI-Mine not only run significant faster, but also consume less memory.

Structure-based Clustering for XML Document Retrieval (XML 문서 검색을 위한 구조 기반 클러스터링)

  • Hwang Jeong Hee;Ryu Keun Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1357-1366
    • /
    • 2004
  • As the importance or XML is increasing to manage information and exchange data efficiently in the web, there are on going works about structural integration and retrieval. The XML. document with the defined structure can retrieve the structure through the DTD or XML schema, but the existing method can't apply to XML. documents which haven't the structure information. Therefore. in this paper we propose a new clus-tering technique at a basic research which make it possible to retrieve structure fast about the XML documents that haven't the structure information. We first estract the feature of frequent structure from each XML document. And we cluster based on the similar structure by con-sidering the frequent structure as representative structure of the XML document, which makes it possible to retrieve the XML document raster than dealing with the whole documents that have different structure. And also we perform the structure retrieval about XML documents based on the clusters which is the group of similar structure. Moreover, we show efficiency of proposed method to describe how to apply the structure retrieval as well as to display the example of application result.

Web Structure Mining by Extracting Hyperlinks from Web Documents and Access Logs (웹 문서와 접근로그의 하이퍼링크 추출을 통한 웹 구조 마이닝)

  • Lee, Seong-Dae;Park, Hyu-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2059-2071
    • /
    • 2007
  • If the correct structure of Web site is known, the information provider can discover users# behavior patterns and characteristics for better services, and users can find useful information easily and exactly. There may be some difficulties, however, to extract the exact structure of Web site because documents one the Web tend to be changed frequently. This paper proposes new method for extracting such Web structure automatically. The method consists of two phases. The first phase extracts the hyperlinks among Web documents, and then constructs a directed graph to represent the structure of Web site. It has limitations, however, to discover the hyperlinks in Flash and Java Applet. The second phase is to find such hidden hyperlinks by using Web access log. It fist extracts the click streams from the access log, and then extract the hidden hyperlinks by comparing with the directed graph. Several experiments have been conducted to evaluate the proposed method.

Efficient Mining of User Behavior Patterns by Temporal Access (시간을 고려한 모바일 사용자의 유용한 행동패턴 추출)

  • Lee, Seung-Cheol;Kim, Ung-Mo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.60-65
    • /
    • 2007
  • 유비쿼터스 컴퓨팅은 일상생활 속에 편재해 있는 PDA 또는 모바일 폰 등의 무선 단말기를 이용하여 사용자가 언제, 어디서나 유용한 서비스를 받을 수 있는 환경을 제공한다. 이는 대용량 데이터베이스에 저장된 지능형 멀티 모바일 에이전트의 통신 데이터를 분석하여 모바일 유저의 위치에 따른 요청된 유용한 서비스정보를 추출할 수 있게 되었으며, 이를 통한 효율적인 사용자 서비스는 물론 광고 등의 새로운 이익 창출로 이어져왔다. 그러나 기존 위치 정보만을 이용한 서비스정보의 추론은 단순히 통계적인 빈발 행동패턴만을 추출하여 시간에 따른 사용자의 서비스 요청에 능동적으로 대처할 수 없을 뿐만 아니라 원치 않는 서비스정보를 제공하는 문제점을 야기 시켰다. 이 논문에서는 시간을 고려한 모바일 사용자의 유용한 행동패턴 추출을 위한 효율적인 마이닝 기법인 시간대별 모바일 사용자 행동패턴 및 메모리 적재에 용이한 새로운 콤팩트한 데이터 구조를 제안한다. 이는 사용자의 동적인 움직임에 따른 실시간적 서비스를 가능하게 하며, 더 나아가 유비쿼터스 컴퓨팅 환경에서 중요한 이슈인 데이터의 메모리 적재가 용이 할 뿐만 아니라 접근속도의 향상 및 메모리 사용이 적다는 이점이 있다.

  • PDF

Discovering Association Rules using Item Clustering on Frequent Pattern Network (빈발 패턴 네트워크에서 아이템 클러스터링을 통한 연관규칙 발견)

  • Oh, Kyeong-Jin;Jung, Jin-Guk;Ha, In-Ay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Data mining is defined as the process of discovering meaningful and useful pattern in large volumes of data. In particular, finding associations rules between items in a database of customer transactions has become an important thing. Some data structures and algorithms had been proposed for storing meaningful information compressed from an original database to find frequent itemsets since Apriori algorithm. Though existing method find all association rules, we must have a lot of process to analyze association rules because there are too many rules. In this paper, we propose a new data structure, called a Frequent Pattern Network (FPN), which represents items as vertices and 2-itemsets as edges of the network. In order to utilize FPN, We constitute FPN using item's frequency. And then we use a clustering method to group the vertices on the network into clusters so that the intracluster similarity is maximized and the intercluster similarity is minimized. We generate association rules based on clusters. Our experiments showed accuracy of clustering items on the network using confidence, correlation and edge weight similarity methods. And We generated association rules using clusters and compare traditional and our method. From the results, the confidence similarity had a strong influence than others on the frequent pattern network. And FPN had a flexibility to minimum support value.

  • PDF

Web Log Mining for Adaptive Web Sites (적응형 웹 사이트를 위한 웹 로그 마이닝)

  • Ko, Kyong-Ja;Kim, In-Cheol
    • Annual Conference of KIPS
    • /
    • 2001.04a
    • /
    • pp.325-328
    • /
    • 2001
  • 본 논문에서는 웹 사이트에 접근하는 이용자의 패턴을 분석하여 정보 제공이 보다 용이한 구조로 자동 개선시켜 나가는 적응형 웹 사이트의 구현 방안을 제시한다. 특히, 본 연구에서는 기존 웹 사이트의 구조를 가능한 파괴하지 않는 범위 내에서 웹 사이트론 변경하고자 이용자의 접근 패턴상 연관성은 높으나 접근 경로가 긴 문서들을 추출하여 색인 페이지를 추가 생성한다. 이를 위하여, 먼저 대용량의 웹 서버 로그 데이터를 대상으로 하이퍼 링크 구조에 따라 필터링된 최후 전진 문서만을 가지고 데이터 시퀀스를 구성한다. 이러한 데이터 시퀀스에 새로운 순차 접근 패턴 탐색 알고리즘인 TPA를 적용함으로써 웹 문서간 충분한 지지도를 갖는 연관성 있는 문서들의 시퀀스를 구한다. 이와같은 빈발 시퀀스들에 대한 색인 페이지를 추가로 생성시켜주는 서비스를 통하여 이용자들의 효과적인 정보 접근을 지원할 수 있는 웹 사이트로의 변경이 가능하다.

  • PDF

Offering system for major article Using Text Mining and Data Mining (텍스트마이닝과 데이터마이닝을 이용한 주요기사 제공 시스템)

  • Song, Sung-Mook;Ryu, Joon-Suk;Kim, Ung-Mo
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.733-734
    • /
    • 2009
  • 현대사회에서 인터넷의 비약적인 발전과 빠른 보급으로 우리가 접할 수 있는 정보의 양이 늘어나고 이들 중에서 필요한 정보만을 얻어내기에는 쉽지 않다. 특히 비구조적이고 정형화되지 않은 텍스트 데이터인 기사들을 텍스트마이닝을 이용하여 기사 헤드라인을 용어 단위로 구분하여 추출하고 데이터마이닝의 연관 규칙을 적용하여 빈발항목의 지지도와 용어간의 연관성을 통해 기사의 내용에 효과적으로 접근하는 시스템을 제안하고자 한다.

A Clustering Technique using Common Structures of XML Documents (XML 문서의 공통 구조를 이용한 클러스터링 기법)

  • Hwang, Jeong-Hee;Ryu, Keun-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.650-661
    • /
    • 2005
  • As the Internet is growing, the use of XML which is a standard of semi-structured document is increasing. Therefore, there are on going works about integration and retrieval of XML documents. However, the basis of efficient integration and retrieval of documents is to cluster XML documents with similar structure. The conventional XML clustering approaches use the hierarchical clustering algorithm that produces the demanded number of clusters through repeated merge, but it have some problems that it is difficult to compute the similarity between XML documents and it costs much time to compare similarity repeatedly. In order to address this problem, we use clustering algorithm for transactional data that is scale for large size of data. In this paper we use common structures from XML documents that don't have DTD or schema. In order to use common structures of XML document, we extract representative structures by decomposing the structure from a tree model expressing the XML document, and we perform clustering with the extracted structure. Besides, we show efficiency of proposed method by comparing and analyzing with the previous method.

KISS Korea Computer Congress 2007 (이동 객체의 패턴 탐사를 위한 시공간 데이터 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.153-158
    • /
    • 2007
  • 사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이력 데이터 집합으로부터 유용한 패턴을 추출하여 의미 있는 지식을 탐사하기 위한 시공간 패턴 탐사가 필요하다. 현재까지 다양한 패턴 탐사 기법들이 제안되었으나 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하기 때문에 한정된 시간 범위와 제한적인 영역 범위 내에서의 빈발 패턴을 탐사하는 문제에는 적용하기 어렵다. 또한 패턴 탐사 수행 시 데이터베이스를 반복 스캔하여 탐사 수행시간이 많이 소요되는 문제를 포함하거나 메모리상에 탐사 대상인 후보 패턴 트리를 생성하는 방법을 통해 탐사 시간을 줄일 수는 있으나 이동 객체 수나 최소지지도 등에 따라 트리를 구성하고 유지하는데 드는 비용이 커질 수 있다. 따라서 이러한 문제를 해결하기 위한 효율적인 패턴 탐사 기법의 개발이 요구됨으로써 선행 작업으로 본 논문에서는 상세 수준의 객체 이력 데이터들의 시간 및 공간 속성을 의미 있는 시간영역과 공간영역 정보로 변환하는 시공간 데이터 일반화 방법을 제안한다. 제안된 방법은 공간 개념 계층에 대한 영역 정보들을 영역 Grid 해쉬 테이블(AGHT:Area Grid Hash Table)로 생성하여 공간 인덱스트리인 R*-Tree의 검색 방법을 이용해 이동 객체의 위치 속성을 2차원 공간영역으로 일반화하고, 시간 개념 계층을 생성하여 이동 객체의 시간적인 속성을 시간 영역으로 일반화함으로써 일반화된 데이터 집합을 형성하여 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.의 성능을 기대할 수 있을 것이다.onium sulfate첨가배지(添加培地)에서 가장 저조(低調)하였다. vitamin중(中)에서는 niacin과 thiamine첨가배지(添加培地)에서 근소(僅少)한 증가(增加)를 나타내었다.소시켜 항이뇨 및 Na 배설 감소를 초래하는 작용과, 둘째는 신경 경로를 통하지 않고, 아마도 humoral factor를 통하여 신세뇨관에서 Na 재흡수를 억제하는 작용이 복합적으로 나타내는 것을 알 수 있었다.으로 초래되는 복합적인 기전으로 추정되었다., 소형과와 기형과는 S-3에서 많이 나왔다. 이상 연구결과에서 입도분포가 1.2-5mm인 것이 바람직한 것으로 나타났다.omopolysaccharides로 확인되었다. EPS 생성량이 가장 좋은 Leu. kimchii GJ2의 평균 분자량은 360,606 Da이었으며, 나머지 두 균주에 대해서는 생성 EPS 형태와 점도의 차이로 미루어 보아 생성 EPS의 분자구조와 분자량이 서로 다른 것으로 판단하였다.TEX>개로 통계학적으로 유의한 차이가 없었다. Heat shock protein-70 (HSP70)과 neuronal nitric oxide synthase (nNOS)에 대한 면역조직화학검사에서 실험군 Cs2군의 신경세포가 대조군 12군에 비해 HSP70과 nNOS의 과발현을 보였으며, 이는 통계학적으로 유의한 차이를 보였다(p<0.05). nNOS와 HSP70의 발현은 강한 연관성을 보였고(상관계수 0.91, p=0.000), nNOS를 발현하는 세포가 동시에 HSP70도 발현함을 확인할 수 있었다. 결론: 우리는

  • PDF

Frequently Occurred Information Extraction from a Collection of Labeled Trees (라벨 트리 데이터의 빈번하게 발생하는 정보 추출)

  • Paik, Ju-Ryon;Nam, Jung-Hyun;Ahn, Sung-Joon;Kim, Ung-Mo
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.65-78
    • /
    • 2009
  • The most commonly adopted approach to find valuable information from tree data is to extract frequently occurring subtree patterns from them. Because mining frequent tree patterns has a wide range of applications such as xml mining, web usage mining, bioinformatics, and network multicast routing, many algorithms have been recently proposed to find the patterns. However, existing tree mining algorithms suffer from several serious pitfalls in finding frequent tree patterns from massive tree datasets. Some of the major problems are due to (1) modeling data as hierarchical tree structure, (2) the computationally high cost of the candidate maintenance, (3) the repetitious input dataset scans, and (4) the high memory dependency. These problems stem from that most of these algorithms are based on the well-known apriori algorithm and have used anti-monotone property for candidate generation and frequency counting in their algorithms. To solve the problems, we base a pattern-growth approach rather than the apriori approach, and choose to extract maximal frequent subtree patterns instead of frequent subtree patterns. The proposed method not only gets rid of the process for infrequent subtrees pruning, but also totally eliminates the problem of generating candidate subtrees. Hence, it significantly improves the whole mining process.

  • PDF