Journal of the Korea Academia-Industrial cooperation Society
/
v.10
no.8
/
pp.1998-2004
/
2009
Recently, due to technical developments of various storage devices and networks, the amount of data increases rapidly. The large volume of data streams poses unique space and time constraints on the data mining process. The continuous characteristic of streaming data necessitates the use of algorithms that require only one scan over the stream for knowledge discovery. Most of the researches based on the support are concerned with the frequent itemsets, but ignore the infrequent itemsets even if it is crucial. In this paper, we propose an efficient method WSFI-Mine(Weighted Support Frequent Itemsets Mine) to mine all frequent itemsets by one scan from the data stream. This method can discover the closed frequent itemsets using DCT(Data Stream Closed Pattern Tree). We compare the performance of our algorithm with DSM-FI and THUI-Mine, under different minimum supports. As results show that WSFI-Mine not only run significant faster, but also consume less memory.
As the importance or XML is increasing to manage information and exchange data efficiently in the web, there are on going works about structural integration and retrieval. The XML. document with the defined structure can retrieve the structure through the DTD or XML schema, but the existing method can't apply to XML. documents which haven't the structure information. Therefore. in this paper we propose a new clus-tering technique at a basic research which make it possible to retrieve structure fast about the XML documents that haven't the structure information. We first estract the feature of frequent structure from each XML document. And we cluster based on the similar structure by con-sidering the frequent structure as representative structure of the XML document, which makes it possible to retrieve the XML document raster than dealing with the whole documents that have different structure. And also we perform the structure retrieval about XML documents based on the clusters which is the group of similar structure. Moreover, we show efficiency of proposed method to describe how to apply the structure retrieval as well as to display the example of application result.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.11
/
pp.2059-2071
/
2007
If the correct structure of Web site is known, the information provider can discover users# behavior patterns and characteristics for better services, and users can find useful information easily and exactly. There may be some difficulties, however, to extract the exact structure of Web site because documents one the Web tend to be changed frequently. This paper proposes new method for extracting such Web structure automatically. The method consists of two phases. The first phase extracts the hyperlinks among Web documents, and then constructs a directed graph to represent the structure of Web site. It has limitations, however, to discover the hyperlinks in Flash and Java Applet. The second phase is to find such hidden hyperlinks by using Web access log. It fist extracts the click streams from the access log, and then extract the hidden hyperlinks by comparing with the directed graph. Several experiments have been conducted to evaluate the proposed method.
Proceedings of the Korean Information Science Society Conference
/
2007.10c
/
pp.60-65
/
2007
유비쿼터스 컴퓨팅은 일상생활 속에 편재해 있는 PDA 또는 모바일 폰 등의 무선 단말기를 이용하여 사용자가 언제, 어디서나 유용한 서비스를 받을 수 있는 환경을 제공한다. 이는 대용량 데이터베이스에 저장된 지능형 멀티 모바일 에이전트의 통신 데이터를 분석하여 모바일 유저의 위치에 따른 요청된 유용한 서비스정보를 추출할 수 있게 되었으며, 이를 통한 효율적인 사용자 서비스는 물론 광고 등의 새로운 이익 창출로 이어져왔다. 그러나 기존 위치 정보만을 이용한 서비스정보의 추론은 단순히 통계적인 빈발 행동패턴만을 추출하여 시간에 따른 사용자의 서비스 요청에 능동적으로 대처할 수 없을 뿐만 아니라 원치 않는 서비스정보를 제공하는 문제점을 야기 시켰다. 이 논문에서는 시간을 고려한 모바일 사용자의 유용한 행동패턴 추출을 위한 효율적인 마이닝 기법인 시간대별 모바일 사용자 행동패턴 및 메모리 적재에 용이한 새로운 콤팩트한 데이터 구조를 제안한다. 이는 사용자의 동적인 움직임에 따른 실시간적 서비스를 가능하게 하며, 더 나아가 유비쿼터스 컴퓨팅 환경에서 중요한 이슈인 데이터의 메모리 적재가 용이 할 뿐만 아니라 접근속도의 향상 및 메모리 사용이 적다는 이점이 있다.
Data mining is defined as the process of discovering meaningful and useful pattern in large volumes of data. In particular, finding associations rules between items in a database of customer transactions has become an important thing. Some data structures and algorithms had been proposed for storing meaningful information compressed from an original database to find frequent itemsets since Apriori algorithm. Though existing method find all association rules, we must have a lot of process to analyze association rules because there are too many rules. In this paper, we propose a new data structure, called a Frequent Pattern Network (FPN), which represents items as vertices and 2-itemsets as edges of the network. In order to utilize FPN, We constitute FPN using item's frequency. And then we use a clustering method to group the vertices on the network into clusters so that the intracluster similarity is maximized and the intercluster similarity is minimized. We generate association rules based on clusters. Our experiments showed accuracy of clustering items on the network using confidence, correlation and edge weight similarity methods. And We generated association rules using clusters and compare traditional and our method. From the results, the confidence similarity had a strong influence than others on the frequent pattern network. And FPN had a flexibility to minimum support value.
본 논문에서는 웹 사이트에 접근하는 이용자의 패턴을 분석하여 정보 제공이 보다 용이한 구조로 자동 개선시켜 나가는 적응형 웹 사이트의 구현 방안을 제시한다. 특히, 본 연구에서는 기존 웹 사이트의 구조를 가능한 파괴하지 않는 범위 내에서 웹 사이트론 변경하고자 이용자의 접근 패턴상 연관성은 높으나 접근 경로가 긴 문서들을 추출하여 색인 페이지를 추가 생성한다. 이를 위하여, 먼저 대용량의 웹 서버 로그 데이터를 대상으로 하이퍼 링크 구조에 따라 필터링된 최후 전진 문서만을 가지고 데이터 시퀀스를 구성한다. 이러한 데이터 시퀀스에 새로운 순차 접근 패턴 탐색 알고리즘인 TPA를 적용함으로써 웹 문서간 충분한 지지도를 갖는 연관성 있는 문서들의 시퀀스를 구한다. 이와같은 빈발 시퀀스들에 대한 색인 페이지를 추가로 생성시켜주는 서비스를 통하여 이용자들의 효과적인 정보 접근을 지원할 수 있는 웹 사이트로의 변경이 가능하다.
현대사회에서 인터넷의 비약적인 발전과 빠른 보급으로 우리가 접할 수 있는 정보의 양이 늘어나고 이들 중에서 필요한 정보만을 얻어내기에는 쉽지 않다. 특히 비구조적이고 정형화되지 않은 텍스트 데이터인 기사들을 텍스트마이닝을 이용하여 기사 헤드라인을 용어 단위로 구분하여 추출하고 데이터마이닝의 연관 규칙을 적용하여 빈발항목의 지지도와 용어간의 연관성을 통해 기사의 내용에 효과적으로 접근하는 시스템을 제안하고자 한다.
As the Internet is growing, the use of XML which is a standard of semi-structured document is increasing. Therefore, there are on going works about integration and retrieval of XML documents. However, the basis of efficient integration and retrieval of documents is to cluster XML documents with similar structure. The conventional XML clustering approaches use the hierarchical clustering algorithm that produces the demanded number of clusters through repeated merge, but it have some problems that it is difficult to compute the similarity between XML documents and it costs much time to compare similarity repeatedly. In order to address this problem, we use clustering algorithm for transactional data that is scale for large size of data. In this paper we use common structures from XML documents that don't have DTD or schema. In order to use common structures of XML document, we extract representative structures by decomposing the structure from a tree model expressing the XML document, and we perform clustering with the extracted structure. Besides, we show efficiency of proposed method by comparing and analyzing with the previous method.
Proceedings of the Korean Information Science Society Conference
/
2007.06c
/
pp.153-158
/
2007
사용자들의 특성에 맞게 개인화되고 세분화된 위치 기반 서비스를 제공하기 위해서는 방대한 이동 객체의 위치 이력 데이터 집합으로부터 유용한 패턴을 추출하여 의미 있는 지식을 탐사하기 위한 시공간 패턴 탐사가 필요하다. 현재까지 다양한 패턴 탐사 기법들이 제안되었으나 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하기 때문에 한정된 시간 범위와 제한적인 영역 범위 내에서의 빈발 패턴을 탐사하는 문제에는 적용하기 어렵다. 또한 패턴 탐사 수행 시 데이터베이스를 반복 스캔하여 탐사 수행시간이 많이 소요되는 문제를 포함하거나 메모리상에 탐사 대상인 후보 패턴 트리를 생성하는 방법을 통해 탐사 시간을 줄일 수는 있으나 이동 객체 수나 최소지지도 등에 따라 트리를 구성하고 유지하는데 드는 비용이 커질 수 있다. 따라서 이러한 문제를 해결하기 위한 효율적인 패턴 탐사 기법의 개발이 요구됨으로써 선행 작업으로 본 논문에서는 상세 수준의 객체 이력 데이터들의 시간 및 공간 속성을 의미 있는 시간영역과 공간영역 정보로 변환하는 시공간 데이터 일반화 방법을 제안한다. 제안된 방법은 공간 개념 계층에 대한 영역 정보들을 영역 Grid 해쉬 테이블(AGHT:Area Grid Hash Table)로 생성하여 공간 인덱스트리인 R*-Tree의 검색 방법을 이용해 이동 객체의 위치 속성을 2차원 공간영역으로 일반화하고, 시간 개념 계층을 생성하여 이동 객체의 시간적인 속성을 시간 영역으로 일반화함으로써 일반화된 데이터 집합을 형성하여 효율적인 이동 객체의 시간 패턴 마이닝을 유도할 수 있다.의 성능을 기대할 수 있을 것이다.onium sulfate첨가배지(添加培地)에서 가장 저조(低調)하였다. vitamin중(中)에서는 niacin과 thiamine첨가배지(添加培地)에서 근소(僅少)한 증가(增加)를 나타내었다.소시켜 항이뇨 및 Na 배설 감소를 초래하는 작용과, 둘째는 신경 경로를 통하지 않고, 아마도 humoral factor를 통하여 신세뇨관에서 Na 재흡수를 억제하는 작용이 복합적으로 나타내는 것을 알 수 있었다.으로 초래되는 복합적인 기전으로 추정되었다., 소형과와 기형과는 S-3에서 많이 나왔다. 이상 연구결과에서 입도분포가 1.2-5mm인 것이 바람직한 것으로 나타났다.omopolysaccharides로 확인되었다. EPS 생성량이 가장 좋은 Leu. kimchii GJ2의 평균 분자량은 360,606 Da이었으며, 나머지 두 균주에 대해서는 생성 EPS 형태와 점도의 차이로 미루어 보아 생성 EPS의 분자구조와 분자량이 서로 다른 것으로 판단하였다.TEX>개로 통계학적으로 유의한 차이가 없었다. Heat shock protein-70 (HSP70)과 neuronal nitric oxide synthase (nNOS)에 대한 면역조직화학검사에서 실험군 Cs2군의 신경세포가 대조군 12군에 비해 HSP70과 nNOS의 과발현을 보였으며, 이는 통계학적으로 유의한 차이를 보였다(p<0.05). nNOS와 HSP70의 발현은 강한 연관성을 보였고(상관계수 0.91, p=0.000), nNOS를 발현하는 세포가 동시에 HSP70도 발현함을 확인할 수 있었다. 결론: 우리는
The most commonly adopted approach to find valuable information from tree data is to extract frequently occurring subtree patterns from them. Because mining frequent tree patterns has a wide range of applications such as xml mining, web usage mining, bioinformatics, and network multicast routing, many algorithms have been recently proposed to find the patterns. However, existing tree mining algorithms suffer from several serious pitfalls in finding frequent tree patterns from massive tree datasets. Some of the major problems are due to (1) modeling data as hierarchical tree structure, (2) the computationally high cost of the candidate maintenance, (3) the repetitious input dataset scans, and (4) the high memory dependency. These problems stem from that most of these algorithms are based on the well-known apriori algorithm and have used anti-monotone property for candidate generation and frequency counting in their algorithms. To solve the problems, we base a pattern-growth approach rather than the apriori approach, and choose to extract maximal frequent subtree patterns instead of frequent subtree patterns. The proposed method not only gets rid of the process for infrequent subtrees pruning, but also totally eliminates the problem of generating candidate subtrees. Hence, it significantly improves the whole mining process.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.