본 연구에서는 텍스트 마이닝 분석을 통해 한국 사회에서 행복과 불행이 갖는 의미를 탐색하였다. 자료수집 및 분석을 위하여 온라인 뉴스 포털에서 Word2Vec과 TF-IDF 방법을 사용하여 '행복' 및 '불행' 키워드와 유사한 단어를 추출했다. 또한 K-LIWC 사전을 사용하여 행복 및 불행과 연관된 단어들의 감성 속성에 대해 알아보았다. TF-IDF 분석 결과, 행복과 불행은 사회적 요인과 해당 년도의 사회적 이슈들과 각각 높은 관련성이 있는 것으로 관찰됐다. Word2Vec 분석에서는 '희망'이 6년 연속으로 행복과 유사성이 높은 단어로 나타났다. K-LIWC 분석에서 '돈재정적이슈', '학교', '의사소통'은 행복 및 불행과 모두 관련성이 높았다. 그밖에 '몸 상태와 증상'이 불행과 높은 관련성이 있는 범주로 나타났다. 이러한 결과를 바탕으로 본 연구의 의의, 제한점 및 후속연구에 대한 필요성을 논의하였다.
홍채진단은 홍채의 패턴, 색 등 다른 특징들을 조사하여 환자의 병을 진단하는 대체의학이다. 이 논문에서는 촬영한 홍채이미지의 차영상을 이용해 홍채를 분석하고 홍채 변화에 따른 환자의 건강진단에 활용한 질병예측 알고리즘을 제안한다. 그러나 기존의 연구는 홍채영상을 이용하여 홍채 내의 특정 패턴을 검출하는 알고리즘 연구로 홍채의 다양한 정보로부터 건강 상태를 체크하는 진단시스템으로 사용하기에는 부족하다. 따라서 이 논문에서는 촬영된 홍채영상의 차영상을 이용해 질병의 조기 진단 및 질병의 전개과정을 명확히 판단한다. 또한 홍채영상으로부터 8가지 주요 홍채병소징후를 추출하고 검진의 정확도를 실험한 결과 패턴 매칭 기법에 의한 인식률 91%로 홍채진단의 자동화에 적용 가능하다.
본 논문의 연구목표는 LDA(Latent Dirichlet Allocation) 모델을 적용하여 국가연구개발사업을 통해 수행되고 있는 ICT(Information and Communication Technology) 분야의 연구과제에 대한 주요 연구 토픽과 동향을 탐색하는데 있다. 연구방법에는 NTIS(National Science and Technology Information Service)로부터 최근 5년간 국가연구개발사업의 전체 연구과제 정보를 다운로드받고 이를 정보통신기획평가원(IITP)의 EZone 시스템과 매칭하여 ICT 분야 연구과제 5,200건을 확보하고, 토픽모델링 기법중 하나인 LDA 모델을 적용하여 연구토픽과 연구동향을 조사하였다. 실험결과로, ICT분야 연구과제에 대한 연구토픽은 인공지능, 빅데이터, 사물인터넷(Internet of Things)과 같은 지능정보기술로 확인되었고 연구동향에는 초실감미디어에 관한 연구가 활발히 진행되고 있음을 확인하였다. 끝으로 본 논문에서 진행된 국가연구개발사업에 대한 토픽모델링 결과는 향후 ICT분야 연구개발 계획 및 전략수립, 정책, 과제기획 등 중요한 정보로 활용될 수 있을 것이다.
The purpose of this study is to identify the maturity stages of venture firms through classification analysis, which is widely used as a big data technique. Venture companies should develop a competitive advantage in the market. And the maturity stage of a company can be classified into five stages. I will analyze a difference in the growth stage of venture firms between the survey response and the statistical classification methods. The firm growth level distinguished five stages and was divided into the period of start-up and declines. A classification method of big data uses popularly k-mean cluster analysis, hierarchical cluster analysis, artificial neural network, and decision tree analysis. I used variables that asset increase, capital increase, sales increase, operating profit increase, R&D investment increase, operation period and retirement number. The research results, each big data analysis technique showed a large difference of samples sized in the group. In particular, the decision tree and neural networks' methods were classified as three groups rather than five groups. The groups size of all classification analysis was all different by the big data analysis methods. Furthermore, according to the variables' selection and the sample size may be dissimilar results. Also, each classed group showed a number of competitive differences. The research implication is that an analysts need to interpret statistics through management theory in order to interpret classification of big data results correctly. In addition, the choice of classification analysis should be determined by considering not only management theory but also practical experience. Finally, the growth of venture firms needs to be examined by time-series analysis and closely monitored by individual firms. And, future research will need to include significant variables of the company's maturity stages.
본 연구는 소셜네트워크서비스(SNS)상의 빅데이터를 이용한 텍스트 분석기법의 응용으로서 설문 조사 기반의 여론 조사 방법론과 달리 비정형적 언어 기반의 감성 여론 조사 방법론을 제안한다. 기존의 설문 기반 여론 분석모형에 대한 대안적 방법으로 주관성에 기초한 감성 분류 모형을 이용하였다. 이를 위하여, 제20대 국회의원 선거운동 기간 중 선거 관련 실시간 트위터 자료를 수집하여 속성 기반 감성 분석을 이용한 여론의 극성과 강도에 대한 실증 분석을 수행하였다. 개별 SNS에서 사용된 단어의 극성을 분류하기 위해 Lasso 및 Ridge 회귀 모형을 이용하여 극성에 영향력이 큰 변수를 추출하였다. 추출된 변수가 극성에 미치는 긍정 및 부정에 대한 영향을 구분하고, 영향력의 강도를 분석하였다. 대중들이 소셜네트워크상에서 표현한 내용을 바탕으로 한 여론에 대한 긍정 및 부정의 감성 분석을 통해 여론의 향방을 예측하고 극성분석 모형의 정확도를 측정하여, 여론 조사 분야에서 감성 분석 방법론의 적용가능성을 확인하였다.
기후변화 및 환경오염에 대응하기 위해 신재생에너지 정책 연구가 증가하고 있다. 신재생에너지는 녹색산업과 녹색기술로 대표되는 새로운 성장 동력 기술이다. 현재 우리나라는 태양광, 풍력, 수소연료전지 등 3대 전략부분에 신재생에너지 보급 및 기술개발사업에 대한 투자가 이루어지고 있지만 아직은 초기 단계로, 연구 방향 및 투자 분야에 대한 불확실성을 줄이는 것이 무엇보다도 시급한 실정이다. 따라서 본 연구는 빅데이터(big data) 분석방법 중 텍스트 마이닝(Text mining method)과 토픽 모델링 기법(multinominal topic model)을 신재생에너지와 관련된 최근 10년간의 우리나라 언론기사에 적용하여 국가 정책의 핵심이슈 및 세계적인 연구 트렌드를 분석하고, 성장 가능성이 있는 신재생에너지 분야를 예측하였다. 정보통신기술을 바탕으로 한 연구결과는 신재생에너지 분야에 활발히 적용될 것으로 예측된다.
최근 지식 정보의 양이 방대해지면서, 대용량 온톨로지를 효과적으로 추론하는 연구가 활발히 진행되고 있다. 이러한 추론 방법들은 TBox 분류와 ABox 실체화로 나누어진다. TBox 추론은 스키마의 무결성과 종속성을 주로 다룬다면, ABox 추론은 인스턴스 위주의 다양한 문제를 다루어서 실제 응용에서의 중요성이 매우 크다. 따라서 본 논문은 클래스의 제약 조건을 분석하고, 이를 통해 인스턴스가 속하는 클래스를 추론할 수 있는 방법을 제안한다. 객체 지향 언어 기반의 분산 파일 시스템을 활용했던 기존 방법과 달리 함수형 프로그래밍 기반의 인 메모리 시스템인 스파크를 통해 대용량 온톨로지 실체화 방법에 대해서 설명한다. 제안하는 기법의 효율성을 검증하기 위해 W3C의 Wine 온톨로지를 이용해 인스턴스를 생성(1억 2천만~6억개의 트리플)하고 실험을 수행하였다. 6억개의 트리플을 대상으로 진행한 실험의 경우 전체 추론 시간이 51분(696 K Triple/sec)이 소요되었다.
본 연구에서는 국내 외 4차 산업혁명 관련 기술 분야의 연구 동향을 분석하기 위해서 웹 기반의 텍스트 마이닝 및 소셜 네트워크 분석 기법을 이용하였다. 이를 위해 2014년 1월 1일부터 2018년 12월 31일까지 국내 외 4차 산업혁명 관련 기술에 대한 연구 논문 및 보고서의 제목 텍스트와 날짜를 대상으로 하여 텍스트 마이닝을 수행하였다. 이후 개념적인 차원에서의 키워드 간 연관성을 분석하기 위해서 형태소 분석을 통한 대표 키워드를 도출하였다. 이후 사회 연결망 분석을 활용하여 핵심 키워드 및 연관 키워드 등을 도출하였다. 그 결과, 우리나라에서는 4차 산업혁명 기술 관련 연구 개발 및 법 제도적 완화 등에 대한 초점을 두고 있다고 유추할 수 있다. 반면, 국외는 단위 서비스 형태로의 접근을 통해 도시에 대한 실질적 적용 기술에 초점을 두고 있음을 파악할 수 있었다.
1990년대 중후반 이래 북한경제에 많은 변화가 나타나는 것은 분명하다. 2012년 김정은 집권 이후 그 변화는 더욱 뚜렷하게 나타나고 있기 때문에 시기별 경제정책 흐름을 추적하여 변화추이를 파악하는 데 논문의 목적이 있다. 본 논문에서는 텍스트마이닝 분석기법인 LDA 토픽모델링을 활용하여 북한에서 발간되는 경제 분야 대표문헌인 경제학술지 『경제연구』 논문을 분석한다. 『경제연구』에 게재된 논문을 기본 텍스트로 활용하여 북한 경제 전략과 정책변화를 파악한다. 북한에서 생산되는 경제 관련 학술지로 독보적 위치를 차지하고 있는 『경제 연구』에 대한 심층 분석은 북한 당국이 경제 관련 인식하고 있는 현실, 직면 하고 있는 한계, 대안 등을 추적하는데 필수적인 작업이라고 할 수 있다. 다양한 북한 경제 관련 논쟁 주제가 숨어있는 『경제연구』를 빅데이터를 통해 분석하여 북한 지도자의 경제정책 흐름을 살펴보고, 현 김정은 체제가 의도하는 '변화'의 내용을 분석한다.
최근 4차 산업혁명 시대 도래에 따른 AI, 빅데이터 기술 발전으로 인해 신규 사업으로 떠오르고 있는 메타버스 산업이 부각되고 있다, 특히 이러한 관점에 본 논문은 메타버스 역사와 한국 메타버스 시장에서 가장 주목받고 있는 '제페토'의 장·단점을 분석함으로서 이를 기반으로 향후 발전해 나갈 수 있는 적절한 방향을 제시하고자 하였다. 본 연구를 수행하고자 먼저 초기 기업 분석방법으로 SWOT분석 기법을 활용하여 강점과 약점, 기회와 위협 요건을 살펴보고 각각에 요인현황을 도출하고자 하였다. 이후 도출된 각각의 요인들을 토대로 TOWS 발전전략을 모색하고 이를 기반으로 유의한 시사점을 제시하고자 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.