• 제목/요약/키워드: 빅데이터 기법

검색결과 798건 처리시간 0.028초

텍스트마이닝 기법을 활용한 한국인의 행복과 불행 탐색연구 (An Exploratory Study of Happiness and Unhappiness Among Koreans based on Text Mining Techniques)

  • 박상현;도강혁;김학영;박가은;윤진혁;김경일
    • 한국콘텐츠학회논문지
    • /
    • 제18권7호
    • /
    • pp.10-27
    • /
    • 2018
  • 본 연구에서는 텍스트 마이닝 분석을 통해 한국 사회에서 행복과 불행이 갖는 의미를 탐색하였다. 자료수집 및 분석을 위하여 온라인 뉴스 포털에서 Word2Vec과 TF-IDF 방법을 사용하여 '행복' 및 '불행' 키워드와 유사한 단어를 추출했다. 또한 K-LIWC 사전을 사용하여 행복 및 불행과 연관된 단어들의 감성 속성에 대해 알아보았다. TF-IDF 분석 결과, 행복과 불행은 사회적 요인과 해당 년도의 사회적 이슈들과 각각 높은 관련성이 있는 것으로 관찰됐다. Word2Vec 분석에서는 '희망'이 6년 연속으로 행복과 유사성이 높은 단어로 나타났다. K-LIWC 분석에서 '돈재정적이슈', '학교', '의사소통'은 행복 및 불행과 모두 관련성이 높았다. 그밖에 '몸 상태와 증상'이 불행과 높은 관련성이 있는 범주로 나타났다. 이러한 결과를 바탕으로 본 연구의 의의, 제한점 및 후속연구에 대한 필요성을 논의하였다.

홍채학기반이 질병예측을 위한 홍채인식 알고리즘 (An Iris Detection Algorithm for Disease Prediction based Iridology)

  • 조영복;우성희;이상호
    • 한국정보통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.107-114
    • /
    • 2017
  • 홍채진단은 홍채의 패턴, 색 등 다른 특징들을 조사하여 환자의 병을 진단하는 대체의학이다. 이 논문에서는 촬영한 홍채이미지의 차영상을 이용해 홍채를 분석하고 홍채 변화에 따른 환자의 건강진단에 활용한 질병예측 알고리즘을 제안한다. 그러나 기존의 연구는 홍채영상을 이용하여 홍채 내의 특정 패턴을 검출하는 알고리즘 연구로 홍채의 다양한 정보로부터 건강 상태를 체크하는 진단시스템으로 사용하기에는 부족하다. 따라서 이 논문에서는 촬영된 홍채영상의 차영상을 이용해 질병의 조기 진단 및 질병의 전개과정을 명확히 판단한다. 또한 홍채영상으로부터 8가지 주요 홍채병소징후를 추출하고 검진의 정확도를 실험한 결과 패턴 매칭 기법에 의한 인식률 91%로 홍채진단의 자동화에 적용 가능하다.

LDA 토픽모델링을 통한 ICT분야 국가연구개발사업의 주요 연구토픽 및 동향 탐색 (Investigation of Research Topic and Trends of National ICT Research-Development Using the LDA Model)

  • 우창우;이종연
    • 한국융합학회논문지
    • /
    • 제11권7호
    • /
    • pp.9-18
    • /
    • 2020
  • 본 논문의 연구목표는 LDA(Latent Dirichlet Allocation) 모델을 적용하여 국가연구개발사업을 통해 수행되고 있는 ICT(Information and Communication Technology) 분야의 연구과제에 대한 주요 연구 토픽과 동향을 탐색하는데 있다. 연구방법에는 NTIS(National Science and Technology Information Service)로부터 최근 5년간 국가연구개발사업의 전체 연구과제 정보를 다운로드받고 이를 정보통신기획평가원(IITP)의 EZone 시스템과 매칭하여 ICT 분야 연구과제 5,200건을 확보하고, 토픽모델링 기법중 하나인 LDA 모델을 적용하여 연구토픽과 연구동향을 조사하였다. 실험결과로, ICT분야 연구과제에 대한 연구토픽은 인공지능, 빅데이터, 사물인터넷(Internet of Things)과 같은 지능정보기술로 확인되었고 연구동향에는 초실감미디어에 관한 연구가 활발히 진행되고 있음을 확인하였다. 끝으로 본 논문에서 진행된 국가연구개발사업에 대한 토픽모델링 결과는 향후 ICT분야 연구개발 계획 및 전략수립, 정책, 과제기획 등 중요한 정보로 활용될 수 있을 것이다.

빅데이터 분류 기법에 따른 벤처 기업의 성장 단계별 차이 분석 (The Difference Analysis between Maturity Stages of Venture Firms by Classification Techniques of Big Data)

  • 정병호
    • 디지털산업정보학회논문지
    • /
    • 제15권4호
    • /
    • pp.197-212
    • /
    • 2019
  • The purpose of this study is to identify the maturity stages of venture firms through classification analysis, which is widely used as a big data technique. Venture companies should develop a competitive advantage in the market. And the maturity stage of a company can be classified into five stages. I will analyze a difference in the growth stage of venture firms between the survey response and the statistical classification methods. The firm growth level distinguished five stages and was divided into the period of start-up and declines. A classification method of big data uses popularly k-mean cluster analysis, hierarchical cluster analysis, artificial neural network, and decision tree analysis. I used variables that asset increase, capital increase, sales increase, operating profit increase, R&D investment increase, operation period and retirement number. The research results, each big data analysis technique showed a large difference of samples sized in the group. In particular, the decision tree and neural networks' methods were classified as three groups rather than five groups. The groups size of all classification analysis was all different by the big data analysis methods. Furthermore, according to the variables' selection and the sample size may be dissimilar results. Also, each classed group showed a number of competitive differences. The research implication is that an analysts need to interpret statistics through management theory in order to interpret classification of big data results correctly. In addition, the choice of classification analysis should be determined by considering not only management theory but also practical experience. Finally, the growth of venture firms needs to be examined by time-series analysis and closely monitored by individual firms. And, future research will need to include significant variables of the company's maturity stages.

SNS 기반 여론 감성 분석 (Sentiment Analysis for Public Opinion in the Social Network Service)

  • 하상현;노태협
    • 문화기술의 융합
    • /
    • 제6권1호
    • /
    • pp.111-120
    • /
    • 2020
  • 본 연구는 소셜네트워크서비스(SNS)상의 빅데이터를 이용한 텍스트 분석기법의 응용으로서 설문 조사 기반의 여론 조사 방법론과 달리 비정형적 언어 기반의 감성 여론 조사 방법론을 제안한다. 기존의 설문 기반 여론 분석모형에 대한 대안적 방법으로 주관성에 기초한 감성 분류 모형을 이용하였다. 이를 위하여, 제20대 국회의원 선거운동 기간 중 선거 관련 실시간 트위터 자료를 수집하여 속성 기반 감성 분석을 이용한 여론의 극성과 강도에 대한 실증 분석을 수행하였다. 개별 SNS에서 사용된 단어의 극성을 분류하기 위해 Lasso 및 Ridge 회귀 모형을 이용하여 극성에 영향력이 큰 변수를 추출하였다. 추출된 변수가 극성에 미치는 긍정 및 부정에 대한 영향을 구분하고, 영향력의 강도를 분석하였다. 대중들이 소셜네트워크상에서 표현한 내용을 바탕으로 한 여론에 대한 긍정 및 부정의 감성 분석을 통해 여론의 향방을 예측하고 극성분석 모형의 정확도를 측정하여, 여론 조사 분야에서 감성 분석 방법론의 적용가능성을 확인하였다.

신재생에너지 동향 파악을 위한 토픽 모형 분석 (Topic Model Analysis of Research Trend on Renewable Energy)

  • 신규식;최회련;이홍철
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6411-6418
    • /
    • 2015
  • 기후변화 및 환경오염에 대응하기 위해 신재생에너지 정책 연구가 증가하고 있다. 신재생에너지는 녹색산업과 녹색기술로 대표되는 새로운 성장 동력 기술이다. 현재 우리나라는 태양광, 풍력, 수소연료전지 등 3대 전략부분에 신재생에너지 보급 및 기술개발사업에 대한 투자가 이루어지고 있지만 아직은 초기 단계로, 연구 방향 및 투자 분야에 대한 불확실성을 줄이는 것이 무엇보다도 시급한 실정이다. 따라서 본 연구는 빅데이터(big data) 분석방법 중 텍스트 마이닝(Text mining method)과 토픽 모델링 기법(multinominal topic model)을 신재생에너지와 관련된 최근 10년간의 우리나라 언론기사에 적용하여 국가 정책의 핵심이슈 및 세계적인 연구 트렌드를 분석하고, 성장 가능성이 있는 신재생에너지 분야를 예측하였다. 정보통신기술을 바탕으로 한 연구결과는 신재생에너지 분야에 활발히 적용될 것으로 예측된다.

분산 메모리 환경에서의 ABox 실체화 추론 (ABox Realization Reasoning in Distributed In-Memory System)

  • 이완곤;박영택
    • 정보과학회 논문지
    • /
    • 제42권7호
    • /
    • pp.852-859
    • /
    • 2015
  • 최근 지식 정보의 양이 방대해지면서, 대용량 온톨로지를 효과적으로 추론하는 연구가 활발히 진행되고 있다. 이러한 추론 방법들은 TBox 분류와 ABox 실체화로 나누어진다. TBox 추론은 스키마의 무결성과 종속성을 주로 다룬다면, ABox 추론은 인스턴스 위주의 다양한 문제를 다루어서 실제 응용에서의 중요성이 매우 크다. 따라서 본 논문은 클래스의 제약 조건을 분석하고, 이를 통해 인스턴스가 속하는 클래스를 추론할 수 있는 방법을 제안한다. 객체 지향 언어 기반의 분산 파일 시스템을 활용했던 기존 방법과 달리 함수형 프로그래밍 기반의 인 메모리 시스템인 스파크를 통해 대용량 온톨로지 실체화 방법에 대해서 설명한다. 제안하는 기법의 효율성을 검증하기 위해 W3C의 Wine 온톨로지를 이용해 인스턴스를 생성(1억 2천만~6억개의 트리플)하고 실험을 수행하였다. 6억개의 트리플을 대상으로 진행한 실험의 경우 전체 추론 시간이 51분(696 K Triple/sec)이 소요되었다.

소셜 네트워크 분석을 이용한 4차 산업혁명 기술 분야의 연구 동향 분석 (The Analysis of Research Trends in Technology to the Fourth Industrial Revolution using SNA)

  • 김홍광;안종욱
    • 지적과 국토정보
    • /
    • 제49권1호
    • /
    • pp.113-121
    • /
    • 2019
  • 본 연구에서는 국내 외 4차 산업혁명 관련 기술 분야의 연구 동향을 분석하기 위해서 웹 기반의 텍스트 마이닝 및 소셜 네트워크 분석 기법을 이용하였다. 이를 위해 2014년 1월 1일부터 2018년 12월 31일까지 국내 외 4차 산업혁명 관련 기술에 대한 연구 논문 및 보고서의 제목 텍스트와 날짜를 대상으로 하여 텍스트 마이닝을 수행하였다. 이후 개념적인 차원에서의 키워드 간 연관성을 분석하기 위해서 형태소 분석을 통한 대표 키워드를 도출하였다. 이후 사회 연결망 분석을 활용하여 핵심 키워드 및 연관 키워드 등을 도출하였다. 그 결과, 우리나라에서는 4차 산업혁명 기술 관련 연구 개발 및 법 제도적 완화 등에 대한 초점을 두고 있다고 유추할 수 있다. 반면, 국외는 단위 서비스 형태로의 접근을 통해 도시에 대한 실질적 적용 기술에 초점을 두고 있음을 파악할 수 있었다.

토픽모델링을 통한 북한의 경제정책 동향 분석 (The Analysis of North Korea's Economic Policy Trends through Topic Modeling)

  • 강경화
    • 스마트미디어저널
    • /
    • 제9권4호
    • /
    • pp.44-51
    • /
    • 2020
  • 1990년대 중후반 이래 북한경제에 많은 변화가 나타나는 것은 분명하다. 2012년 김정은 집권 이후 그 변화는 더욱 뚜렷하게 나타나고 있기 때문에 시기별 경제정책 흐름을 추적하여 변화추이를 파악하는 데 논문의 목적이 있다. 본 논문에서는 텍스트마이닝 분석기법인 LDA 토픽모델링을 활용하여 북한에서 발간되는 경제 분야 대표문헌인 경제학술지 『경제연구』 논문을 분석한다. 『경제연구』에 게재된 논문을 기본 텍스트로 활용하여 북한 경제 전략과 정책변화를 파악한다. 북한에서 생산되는 경제 관련 학술지로 독보적 위치를 차지하고 있는 『경제 연구』에 대한 심층 분석은 북한 당국이 경제 관련 인식하고 있는 현실, 직면 하고 있는 한계, 대안 등을 추적하는데 필수적인 작업이라고 할 수 있다. 다양한 북한 경제 관련 논쟁 주제가 숨어있는 『경제연구』를 빅데이터를 통해 분석하여 북한 지도자의 경제정책 흐름을 살펴보고, 현 김정은 체제가 의도하는 '변화'의 내용을 분석한다.

메타버스 기업 제페토의 성장경쟁력 분석과 발전전략: SWOT, TOWS 발전모델을 중심으로 (Metaverse Company Zepeto's Growth Competitiveness Analysis and Development Strategy: SWOT Focuses on TOWS Development Model)

  • 박상현;김창태;홍관우
    • 산업융합연구
    • /
    • 제20권6호
    • /
    • pp.7-15
    • /
    • 2022
  • 최근 4차 산업혁명 시대 도래에 따른 AI, 빅데이터 기술 발전으로 인해 신규 사업으로 떠오르고 있는 메타버스 산업이 부각되고 있다, 특히 이러한 관점에 본 논문은 메타버스 역사와 한국 메타버스 시장에서 가장 주목받고 있는 '제페토'의 장·단점을 분석함으로서 이를 기반으로 향후 발전해 나갈 수 있는 적절한 방향을 제시하고자 하였다. 본 연구를 수행하고자 먼저 초기 기업 분석방법으로 SWOT분석 기법을 활용하여 강점과 약점, 기회와 위협 요건을 살펴보고 각각에 요인현황을 도출하고자 하였다. 이후 도출된 각각의 요인들을 토대로 TOWS 발전전략을 모색하고 이를 기반으로 유의한 시사점을 제시하고자 하였다.