• Title/Summary/Keyword: 빅데이터분석기사

Search Result 151, Processing Time 0.021 seconds

English Learning Applications Using Big Data Development (빅데이터를 활용한 영어학습 애플리케이션 설계 및 구현)

  • Lee, Jae-hoon;Kim, Seung-beom;Kim, Chang-young;Yang, Won-seok;Kim, Do-woo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2020.11a
    • /
    • pp.644-647
    • /
    • 2020
  • 최근 교육분야에서는 IT 기술을 활용하여 교육을 혁신하는 것을 의미하는 에듀테크에 대한 관심이 높아지고 있다. 단순한 지식의 전달이 아닌 사용자의 수준에 맞춰진 학습을 하고 자신의 학습 내용을 스스로 모니터링할 수 있는 새로운 교육시스템이 필요하다. 이에 본 논문에서는 빅데이터를 활용한 영어학습 애플리케이션를 제안한다. 제안하는 애플리케이션은 영어뉴스 기사에서 추출한 빅데이터를 활용하여 사용자 수준에 맞춘 유용한 문장을 분석해 자동으로 문제를 생성하고 사용자의 음성데이터를 강세 분석 알고리즘으로 원어민 발음과 비교분석 하여 발음 및 강세를 교정할 수 있도록 설계 및 구현하였다.

Forecasting Birthrate Change based on Big Data (빅데이터 기반의 출산율 변동 예측)

  • Joo, Se-Min;Ok, Seong-Hwan;Hwang, Kyung-Tae
    • Informatization Policy
    • /
    • v.26 no.4
    • /
    • pp.20-35
    • /
    • 2019
  • We empirically analyze the effects of psychological factors, such as the fear of parenting, on fertility rates. An index is calculated based on the share of negative news articles on child care in all social articles from 2000 to 2018. The analysis result shows that as the index increases, the fertility rate after three years falls. This result is repeated in the correlation analysis, simple regression, and VAR analysis. According to Granger causality analysis, it is found that the relation between the index and the fertility rate after three years is not just a simple correlation but a causal relationship. There are differences among age groups. The fertility rate of women in their 20s and 30s shows a significant response to the index, but that of the 40s does not. The index affects the birthrate of first child, but do not affect the birthrate of second or more children. These results are consistent with the intuition that younger women are more likely to be affected by the negative articles about parenting, but not to those who have already experienced childbirth. This study is meaningful in that a significant index for predicting social phenomena is extracted beyond the limited use of news big data such as a simple keyword mention volume monitoring. Also, this big data-based index is a 3-year leading indicator for fertility, which provides the advantage of providing information that helps early detection.

Analysis of articles on water quality accidents in the water distribution networks using big data topic modelling and sentiment analysis (빅데이터 토픽모델링과 감성분석을 활용한 물공급과정에서의 수질사고 기사 분석)

  • Hong, Sung-Jin;Yoo, Do-Guen
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1235-1249
    • /
    • 2022
  • This study applied the web crawling technique for extracting big data news on water quality accidents in the water supply system and presented the algorithm in a procedural way to obtain accurate water quality accident news. In addition, in the case of a large-scale water quality accident, development patterns such as accident recognition, accident spread, accident response, and accident resolution appear according to the occurrence of an accident. That is, the analysis of the development of water quality accidents through key keywords and sentiment analysis for each stage was carried out in detail based on case studies, and the meanings were analyzed and derived. The proposed methodology was applied to the larval accident period of Incheon Metropolitan City in 2020 and analyzed. As a result, in a situation where the disclosure of information that directly affects consumers, such as water quality accidents, is restricted, the tone of news articles and media reports about water quality accidents with long-term damage in the event of an accident and the degree of consumer pride clearly change over time. could check This suggests the need to prepare consumer-centered policies to increase consumer positivity, although rapid restoration of facilities is very important for the development of water quality accidents from the supplier's point of view.

A study on trends and predictions through analysis of linkage analysis based on big data between autonomous driving and spatial information (자율주행과 공간정보의 빅데이터 기반 연계성 분석을 통한 동향 및 예측에 관한 연구)

  • Cho, Kuk;Lee, Jong-Min;Kim, Jong Seo;Min, Guy Sik
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.101-115
    • /
    • 2020
  • In this paper, big data analysis method was used to find out global trends in autonomous driving and to derive activate spatial information services. The applied big data was used in conjunction with news articles and patent document in order to analysis trend in news article and patents document data in spatial information. In this paper, big data was created and key words were extracted by using LDA (Latent Dirichlet Allocation) based on the topic model in major news on autonomous driving. In addition, Analysis of spatial information and connectivity, global technology trend analysis, and trend analysis and prediction in the spatial information field were conducted by using WordNet applied based on key words of patent information. This paper was proposed a big data analysis method for predicting a trend and future through the analysis of the connection between the autonomous driving field and spatial information. In future, as a global trend of spatial information in autonomous driving, platform alliances, business partnerships, mergers and acquisitions, joint venture establishment, standardization and technology development were derived through big data analysis.

Analysis Of News Articles On 'Elderly Living Alone' Based On Big Data: Comparison Before and After COVID-19

  • Jee-Eun, Paik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.111-119
    • /
    • 2023
  • This study aimed to analyze the changes in news articles related to 'Elderly Living Alone' by comparing Big Data-based news articles related to 'Elderly Living Alone' reported before and after the outbreak of COVID-19. For this, 2018 to 2019 were selected before the outbreak of COVID-19, and 2020 to 2021 were selected after the outbreak, and news articles related to 'Elderly Living Alone' were collected and analyzed using BIGKinds. The main results are as follows. First, the number of related articles decreased after the outbreak of COVID-19 compared to before. Second, there was no significant difference in the analysis of related words. Third, in the relationship diagram analysis, 'Executives' before the outbreak of COVID-19 and 'Corona 19' after that showed the most weight. This study is expected to be used as basic data in preparing improvement plans for national policies and systems in the context of the spread of infectious diseases in relation to 'Elderly Living Alone'.

A Study on Sentiment Analysis of Media and SNS response to National Policy: focusing on policy of Child allowance, Childbirth grant (국가 정책에 대한 언론과 SNS 반응의 감성 분석 연구 -아동 수당, 출산 장려금 정책을 중심으로-)

  • Yun, Hye Min;Choi, Eun Jung
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.195-200
    • /
    • 2019
  • Nowadays as the use of mobile communication devices such as smart phones and tablets and the use of Computer is expanded, data is being collected exponentially on the Internet. In addition, due to the development of SNS, users can freely communicate with each other and share information in various fields, so various opinions are accumulated in the from of big data. Accordingly, big data analysis techniques are being used to find out the difference between the response of the general public and the response of the media. In this paper, we analyzed the public response in SNS about child allowance and childbirth grant and analyzed the response of the media. Therefore we gathered articles and comments of users which were posted on Twitter for a certain period of time and crawling the news articles and applied sentiment analysis. From these data, we compared the opinion of the public posted on SNS with the response of the media expressed in news articles. As a result, we found that there is a different response to some national policy between the public and the media.

A study on the Change of Perception of Public Health before and after COVID-19 (COVID-19 발생 전·후 공공의료에 대한 인식변화)

  • Kim, Yu Jeong;Lee, Dong Su
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.367-370
    • /
    • 2022
  • 본 연구는 코로나19 발생 전·후 공공의료를 둘러싼 사회적 인식변화를 뉴스빅데이터를 통해 파악하고자 시도되었다. 뉴스빅데이터는 코로나19 확진자가 처음 발생한 2020년 1월을 기준으로 나누었으며, 코로나19 발생 이전(2018년 1월~2019년 12월, 총 24개월) 40,834건과 코로나19가 발병 이후(2020년 1월~2021년 12월, 총 21개월) 61,761건이었다. 수집된 빅데이터는 R 4.1.1 for Windows를 활용하여 단어 빈도 분석, 연관규칙분석을 실시하였다. 연구결과, 코로나19 발생 전후 뉴스기사에서 공공의료를 둘러싼 핵심어를 비교할 때 코로나19 발생 후에 발생 전보다 큰 폭으로 상승한 단어는 '확산'(664%), '대응'(658%), '의사'(518%), '상황'(504%), '공공병원'(486%), '의료진'(455%), '확충'(324%), '인력'(305%), '어려움'(272%), '정부'(247%)순으로 나타났다. 코로나19 발생 전후 공공의료를 둘러싼 키워드의 연관규칙 분석을 통해서 의료의 패러다임이 일자리 산업에서 감염증 대응을 위한 보건의료로 전환되는 것을 알수 있었다.

  • PDF

Analysis for Daily Food Delivery & Consumption Trends in the Post-Covid-19 Era through Big Data

  • Jeong, Chan-u;Moon, Yoo-Jin;Hwang, Young-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.231-238
    • /
    • 2021
  • In this paper, we suggest a method of analysis for daily food delivery & consumption trends through big data of the post-Covid-19 era. Through analysis of big data and the database system, four analyzed factors, excluding weather, was proved to have significant correlation with delivery sales for 'Baedarui Minjok' of a catering delivery application. The research found that KBS, MBC and SBS Media showed remarkable results in food delivery & consumption sales soaring up to about 60 percent increase on the day after the Covid-19 related new article was issued. In addition, it proved that mobile media and web surfing were the main factors in increasing sales of food delivery & consumption applications, suggesting that viral marketing and emotional analysis by crawling data from SNS used by Millennials might be an important factor in sales growth. It can contribute the companies in the economic recession era to survive by providing the method for analyzing the big data and increasing their sales.

A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money) (빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로)

  • Ahn, Soon-Jae;Lee, Sae-Mi;Ryu, Seung-Ei
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.93-99
    • /
    • 2020
  • Text mining is one of the big data analysis methods that extracts meaningful information from atypical large-scale text data. In this study, text mining was used to monitor citizens' opinions on the policies and systems being implemented. We collected 5,108 newspaper articles and 748 online cafe posts related to 'Gyeonggi Lacal Currency' and performed frequency analysis, TF-IDF analysis, association analysis, and word tree visualization analysis. As a result, many articles related to the purpose of introducing local currency, the benefits provided, and the method of use. However, the contents related to the actual use of local currency were written in the online cafe posts. In order to revitalize local currency, the news was involved in the promotion of local currency as an informant. Online cafe posts consisted of the opinions of citizens who are local currency users. SNS and text mining are expected to effectively activate various policies as well as local currency.

Current Issues with the Big Data Utilization from a Humanities Perspective (인문학적 관점으로 본 빅데이터 활용을 위한 당면 문제)

  • Park, Eun-ha;Jeon, Jin-woo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.6
    • /
    • pp.125-134
    • /
    • 2022
  • This study aims to critically discuss the problems that need to be solved from a humanities perspective in order to utilize big data. It identifies and discusses three research problems that may arise from collecting, processing, and using big data. First, it looks at the fake information circulating with regard to problems with the data itself, specifically looking at article-type advertisements and fake news related to politics. Second, discrimination by the algorithm was cited as a problem with big data processing and its results. This discrimination was seen while searching for engineers on the portal site. Finally, problems related to the invasion of personal related information were seen in three categories: the right to privacy, the right to self-determination of information, and the right to be forgotten. This study is meaningful in that it points out the problems facing in the aspect of big data utilization from the humanities perspective in the era of big data and discusses possible problems in the collection, processing, and use of big data, respectively.