• 제목/요약/키워드: 빅데이터분석기사

검색결과 151건 처리시간 0.026초

장애인 평생교육 관련 언론사 뉴스 빅데이터 분석 (News Big Data Analysis of Media Companies related to Lifelong Education for the Disabled)

  • 권충훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.183-184
    • /
    • 2022
  • 본 연구는 장애인 평생교육 관련 언론사 뉴스 빅데이터를 한국언론재단의 빅카인즈(BIGKinds) 시스템을 이용하여 분석하였다. 본 연구에서는 2000년 1월 1일부터 2020년 12월 31일까지 20년간, 총 54개 언론사에서 보도한 '장애인 평생교육' 관련 뉴스 기사들을 추출하였다. 그 분석대상 뉴스 빅데이터를 대상으로 키워드 트렌드 분석, 언어 네트워크 지도 구현, 연관어 분석(워드클라우드 제시) 등을 진행하였다. 본 연구 결과는 장애인 평생교육 관련 정책 입안 연구 및 실증적인 연구(평생교육 참여 요인 및 효과 등)의 기초자료로 활용될 수 있을 것으로 기대된다.

  • PDF

대규모 빅데이터 분석 기반 COVID-19 Pandemic 분석결과 (Analysis of COVID-19 Pandemic based on Massive Big Data Analysis)

  • 김나현;오하영
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.495-500
    • /
    • 2021
  • 본 연구의 목적은 본 논문의 목적은 최근 확산되고 있는 코로나바이러스감염증-19로 인한 위기를 국내 뉴스 빅데이터를 활용하여 규명하는 것이다. 본 논문은 COVID-19로 인한 위기와 관련된 언론기사들을 한국언론진흥재단의 뉴스 빅데이터 분석 시스템 '빅카인즈(BIGKinds)'를 활용하여 분석하였다. 본 논문에서는 약 10개월의 기간을 설정한 후, '코로나'와 '위기' 키워드를 중심으로 총 54개의 언론사의 관련기사들을 추출하였다. '코로나'와 '위기' 두 키워드 간의 상관계수를 파악하고, 연관어 분석을 통해 경제, 사회, 국제, 문화 각 대표 카테고리 별로 COVID-19로 인해 어떤 위기를 맞고 있는지 파악하고자 한다. COVID-19 사태는 경제, 사회 등 모든 부분에 큰 타격을 주고 있는 만큼 빅데이터를 활용한 본 논문은 COVID-19 사태 위기 극복을 위한 기초자료로 활용될 수 있을 것으로 기대된다.

뉴스 빅데이터 분석을 활용한 가뭄지수 재생산 (Reproduction of drought index using news big data analysis)

  • 정진홍;박동혁;안재현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.386-386
    • /
    • 2020
  • 가뭄은 강수, 증발산, 대기온도, 토양수분 등 다양한 수문기상학적 인자들이 복합적으로 작용하여 발생되기 때문에 가뭄의 정확한 사상을 분석하는 것은 매우 어렵다. 또한 어떤 요인을 중심으로 고려하느냐에 따라 가뭄은 다양한 시각으로 정의되고 있다. 일정기간 평균 강수량보다 적은 강수로 인해 건조한 날이 지속되는 것, 즉 기상요소를 중심으로 가뭄을 정의하는 것을 기상학적 가뭄이라 하며, 작물의 생육에 필요한 수분을 중심으로 고려하는 것을 농업적 가뭄이라 한다. 또한 하천유량, 댐 저수량 등 전반적인 수자원 공급원의 부족을 수문학적 가뭄이라 한다. 이와 같이 다양하게 나타는 가뭄의 발생특성을 정량적으로 해석하기 위해 다양한 가뭄지수가 개발되어 왔다. 그러나 현재까지 개발된 가뭄지수들은 공통적으로 정형데이터를 활용하여 산정한다. 하지만 최근에는 비정형데이터를 활용하여 지수(Index)를 산정하거나, 재난관리에 적용하는 등 비정형 데이터의 활용이 급증하고 있다. 따라서 본 연구에서는 비정형 데이터(뉴스 데이터)를 활용하여 가뭄지수를 산정하고 기존의 가뭄지수들과의 상관성 분석을 실시 한 뒤, 지수결합을 통해 가뭄사상 분석의 새로운 방안을 제시하고자 하였다. 본 연구의 공간적범위는 2014~2015 충남서북부가뭄 지역 중 가장 큰 피해를 입었던 보령지역으로 선정하였으며 시간적범위는 2013~2016년으로 설정하였다. 비정형 데이터의 구축은 크롤링(Crawling)을 활용하여 네이버 뉴스의 기사를 수집하였으며 자료의 신뢰성을 위해 URL이 동일한 중복기사 및 '보령', '가뭄' 단어가 없는 기사는 제거하였다. 구축된 데이터를 기반으로 월별 빈도를 산출하고 표준점수(Z-score)로 환산하여 가뭄지수를 산정하였다. 산정된 가뭄지수가 어떤 가뭄의 유형(기상학적, 농업적, 수문학적)을 보이는지 확인하기 위해 기존의 가뭄지수들과 상관성분석을 실시하였으며, 가장 높은 상관성을 보이는 가뭄지수와 결합을 통해 새로운 가뭄 사상을 분석하였다. 본 연구에서 진행한 가뭄사상 분석은 향후 가뭄만이 아니라 다양한 재난분야에서 비정형 데이터를 활용한 분석의 기초로자료로 활용될 수 있을 것이다.

  • PDF

벤처창업 관련 뉴스 및 SNS 빅데이터 분석 (The Venture Business Starts News and SNS Big Data Analytics)

  • 반재훈;이예찬;안대중;곽윤혁
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.99-102
    • /
    • 2017
  • 대규모의 데이터가 생산되고 저장되는 정보화 시대에서 현재와 과거의 데이터를 바탕으로 미래를 추측하고 방향성을 알아갈 수 있는 빅데이터의 중요성이 강조되고 있다. 정형화 되지 못한 대규모 데이터를 빅데이터 분석 도구인 R과 웹크롤링을 통해 분석하고 그 통계를 기초로 데이터의 정형화와 정보 분석을 하도록 한다. 본 논문에서는 R과 웹크롤링을 이용하여 최근 이슈가 되고 있는 벤처창업을 주 키워드로 하여 뉴스 및 SNS에서 나타나는 벤처창업 관련 빅데이터를 분석한다. 뉴스기사와 페이스북, 트위터에서 벤처창업 관련 데이터를 수집하고 수집된 데이터에서 키워드를 분류하여 효율적인 벤처창업의 방법과 종류, 방향성에 대해 예측한다. 과거의 벤처창업 실패요인을 분석하고 현재의 문제점을 찾아 데이터 분석을 통해 벤처창업의 흐름과 방향성을 제시하여 창업자들이 겪을 수 있는 어려움을 사전에 예측하고 파악함으로써 실질적인 벤처창업에 크게 이바지할 것으로 보여 진다.

  • PDF

주요 신문사 뉴스 기사를 통해 살펴본 2020년도 대한민국의 긴급재난지원금 (Emergency Disaster Support Fund of Korea in 2020 confirmed through News Articles of Major Newspaper)

  • 권충훈;이형하
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.169-170
    • /
    • 2020
  • 본 연구는 코로나19 상황에서 대한민국 긴급재난지원금의 모습을 주요 신문사 뉴스 기사들을 통해 분석하고 그 결과를 제시하고자 한다. 분석대상은 2020년 3월 22일부터(긴급재난지원금 첫 보도) 5월 31일까지, 중앙일간지(11개 신문사)의 '긴급재난지원금' 관련 신문기사들이다. 신문기사 분석방법론은 관련 연구주제가 선행연구가 축적되지 않는 상황에서 나름 가치 있는 연구접근법이다. 본 연구에서는 뉴스기사 빅데이터 분석 서비스인 빅카인즈를 활용하여, 관련기사의 뉴스 트렌드, 연관어, 관계도 등을 분석하여 제시하였다. 본 연구는 향후 해당 분석대상을 가지고, 보다 밀도 있고 깊이 있는 언어네트워크(의미망) 분석으로 확장해 나갈 계획이다.

  • PDF

빅데이터 분석을 통한 피자 판매량 예측 (Pizza Sales Prediction by Using Big Data Analysis.)

  • 이대범;김경섭;이영수;김하나한;변동삼;박성철;전화성;김준태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.890-893
    • /
    • 2014
  • IT산업의 새로운 패러다임으로 빅데이터 분석이 주요한 기술로 부각되고 있다. 본 논문에서는 빅데이터를 수집, 분석하여 이를 통해 피자 판매량을 예측하는 모델을 제안한다. 판매량 예측을 위하여 과거 판매 데이터와 함께 공휴일, 날씨, 뉴스기사, 경제지표, 트렌드, 스포츠 이벤트 등의 데이터를 수집하여 이용하였으며, 판매량 예측 방법으로는 회기분석과 인공신경망 학습 등을 사용하여 빅데이터를 사용하지 않은 경우와 정확도를 비교하였다. 실험 결과 빅데이터를 이용함으로써 예측 오차율이 5%이상 향상됨을 확인하였다.

기계학습 기반 국내 뉴스 헤드라인의 정확성 검증 연구 (Objectivity in Korean News Reporting : Machine Learning-Based Verification of News Headline Accuracy)

  • 백지수;이승언;한지영;차미영
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.281-286
    • /
    • 2021
  • 뉴스 헤드라인에 제3자의 발언을 직접 인용해 전언하는 이른바 '따옴표 저널리즘'이 언론 보도의 객관주의 원칙을 해치는지는 언론학 및 뉴스 구독자에게 중요한 문제이다. 이 연구는 온라인 포털사이트를 통해 실시간 유통되는 한국어 기사의 정확성을 판별하기 위한 기계학습(Machine Learning) 모델을 제안한다. 이 연구에서 제안하는 모델은 Edit Distance와 FastText 기법을 활용해 기사 제목과 본문 내 인용구의 유사성을 측정하고, XGBoost 모델을 활용해 최종 분류한다. 아울러 이 모델을 통해 229만 건의 뉴스 헤드라인에 대해 직접 인용구가 포함된 기사가 취재원의 발언을 주관적인 윤색없이 독자들에게 전하고 있는지를 판별했다. 이뿐만 아니라 딥러닝 기반의 KoELECTRA 모델을 활용해 기사의 제목 내 인용구에 대한 감성 분석을 진행했다. 분석 결과, 윤색이 가미되지 않은 직접 인용형 기사의 비율이 지난 20년 동안 10% 이상 증가했으며, 기사 제목의 인용구에 나타나는 감정은 부정 감성이 긍정 감성의 2.8배 정도로 우세했다. 이러한 시도는 앞으로 계산사회과학 방법론과 빅데이터에 기반한 언론 보도의 평가 및 개선에 도움을 주리라 기대한다.

  • PDF

빅데이터를 활용한 통합교육 언론보도에 대한 인식분석 (An Analysis of the Perception of News coverage about Inclusive Education Using Big Data)

  • 김주향;김정랑
    • 정보교육학회논문지
    • /
    • 제26권6호
    • /
    • pp.543-552
    • /
    • 2022
  • 본 연구에서는 빅데이터 분석기법을 활용하여 통합교육에 대한 언론보도의 사회적 인식을 분석하고자 하였다. 특수교육 발전 5개년 정책 시기에 따라 관련 뉴스 기사를 수집하여, 뉴스 빅데이터를 분석하였다. 그 결과 1차년도 1998년부터 5차년도 2022년까지 특수교육 발전 5개년 정책기간의 언론보도 빈도는 꾸준히 증가한 것으로 나타났다. 이 시기 동안 언론보도의 상위 주제어는 단순한 정의를 개념화하는 단어들로부터 장애 당사자의 실질적교육권에 대한 적극적 의지를 드러내는 단어로 변화가 나타났다. 또한 통합교육 뉴스 기사의 전체적인 키워드 감성 분석 결과 긍정적인 단어 비율이 높은 것으로 나타났다. 본 연구를 통해 특수교육 정책 변화에 따라 통합교육에대한 언론보도의 관심이 양적으로 증가하고 통합교육의 요구가 장애 당사자의 실질적인 교육권을 보장하는 방향으로 구체화되고 있음을 알 수 있다.

'한류' 경향에 관한 국내 언론 기사 빅데이터 분석 연구 ('Korean Wave' News Analysis Using News Big Data)

  • 황서이;박정배
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권5호
    • /
    • pp.1-14
    • /
    • 2020
  • 본 연구는 국내 언론에 나타난 '한류' 관련 이슈의 경향을 파악하기 위해 의제설정이론을 적용하였고, 빅데이터 분석기법인 토픽모델링과 의미연결망분석을 활용하여 언론 기사를 분석하였다. 이를 위해 2000년부터 2019년까지의 '한류' 관련 이슈에 대해 다룬 54개 언론 미디어 보도기사 197,992건의 제목, 부제, 본문, 키워드를 수집하여 핵심 토픽과 토픽 간의 관계를 파악하였다. 연구결과는 다음과 같다. 첫째, 국내 언론에 나타난 '한류'는 한류 관련 지역, 문화, 경제 등과 관련된 단어들이 주요하게 나타났다. 둘째, 한류 관련 이슈는 총 9개의 토픽이 도출되었으며, '방송한류', '한류 수출', '국내외정세', '한류 교육', '뷰티·패션 한류', '음악·공연 한류', '관광한류', '미디어(플랫폼)', '권역 및 지역' 순으로 나타났다. 셋째, 한류는 주로 문화적 차원과 경제적 차원에서 의미화되었고, '문화한류', '경제한류', '교육', '환경', '지리'와 같이 5개의 특성으로 클러스터링 되었다.

빅데이터 처리를 통한 연예 뉴스에서의 키워드 추출에 관한 연구 (A Study on Keywords Extraction from Entertainment News using Bigdata Processing)

  • 유상현;이상준
    • 한국IT정책경영학회 논문지
    • /
    • 제11권6호
    • /
    • pp.1503-1507
    • /
    • 2019
  • 온라인 연예 뉴스 기사의 연성화와 속보성 기사가 증가함에 따라 많은 사람들이 연예면 기사를 접하며, 연예인에 대한 평가를 내릴 수 있게 됐다. 연예인에 대한 평판은 소속된 연예인 자원을 최대한 활용해야 하는 연예기획사의 사업전략에 핵심적인 요소이나, 실시간적으로 대규모 기사가 올라오는 환경에서 어떤 뉴스 기사가 어떤 연예인에 관한 것인지 체계적으로 분석하는 것은 용이하지 않다. 본 논문은 연예 뉴스 데이터에서 언급되는 연예인의 언급량을 기준으로 해당 기사의 주제가 되는 연예인을 추출하고, 해당 연예인의 연예기획사로 연관짓는 연예 뉴스 키워드 분석 시스템을 제안한다. 본 논문에서 제안된 시스템을 통해 광고사 혹은 연예기획사 측에서 사업을 위한 참고 자료로 해당 연예인의 가치 판단을 할 수 있다. 이와 더불어 증권사나 투자자들에게 연예기획사의 전망을 예측하여, 투자 전략의 토대를 마련해줄 수 있다.