• Title/Summary/Keyword: 빅데이터분석기사

Search Result 151, Processing Time 0.022 seconds

Effects of Exposure to Cooking Show Contents on the Consumption of Agricultural Products: Focused on Potato Consumption (쿡방 콘텐츠 노출이 농식품 소비에 미치는 효과: 감자 소비를 중심으로)

  • Rah, HyungChul;Kim, Hyeon-Woong;Ko, Hyeonseok;Shin, Jaehoon;Cho, Yongbeen;Nasridinov, Aziz;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.400-407
    • /
    • 2021
  • Recently, mukbang and cookbang or cooking shows on TV and YouTube channels have increased, and the influences of these broadcasts on food consumption have been gradually increasing. There were several news articles on 'Baek Jong-won effect', in which the consumption of the agri-food Mr. Jong-won Baek mentioned on his broadcast soared, and even foods named after him are on the market. In this study, Mr. Jong-won Baek, who produces influential cooking contents through various media, was taken as a representative example. We evaluated if 'Baek Jong-won effect' exists on potato consumption, which Mr. Jong-won Baek broadcasted potato cooking recipes on TV and YouTube. After the potato recipe was broadcasted for the first time on the TV show called HomeFoodRescue, the differences in the amount of money to purchase potatoes before and after the broadcast were estimated by using the money amount to purchase data of Agri-food consumers panel and the difference-in-differences method at 6 time points (3, 6, 9, 12, 24, and 36 months). Among the time points analyzed, the potato purchases at post-broadcast were less than those at pre-broadcast. No results were observed suggesting the existence of 'Baek Jong-won effect' on potato consumption through HomeFoodRescue show in the study.

A Study on Industry-specific Sustainability Strategy: Analyzing ESG Reports and News Articles (산업별 지속가능경영 전략 고찰: ESG 보고서와 뉴스 기사를 중심으로)

  • WonHee Kim;YoungOk Kwon
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.287-316
    • /
    • 2023
  • As global energy crisis and the COVID-19 pandemic have emerged as social issues, there is a growing demand for companies to move away from profit-centric business models and embrace sustainable management that balances environmental, social, and governance (ESG) factors. ESG activities of companies vary across industries, and industry-specific weights are applied in ESG evaluations. Therefore, it is important to develop strategic management approaches that reflect the characteristics of each industry and the importance of each ESG factor. Additionally, with the stance of strengthened focus on ESG disclosures, specific guidelines are needed to identify and report on sustainable management activities of domestic companies. To understand corporate sustainability strategies, analyzing ESG reports and news articles by industry can help identify strategic characteristics in specific industries. However, each company has its own unique strategies and report structures, making it difficult to grasp detailed trends or action items. In our study, we analyzed ESG reports (2019-2021) and news articles (2019-2022) of six companies in the 'Finance,' 'Manufacturing,' and 'IT' sectors to examine the sustainability strategies of leading domestic ESG companies. Text mining techniques such as keyword frequency analysis and topic modeling were applied to identify industry-specific, ESG element-specific management strategies and issues. The analysis revealed that in the 'Finance' sector, customer-centric management strategies and efforts to promote an inclusive culture within and outside the company were prominent. Strategies addressing climate change, such as carbon neutrality and expanding green finance, were also emphasized. In the 'Manufacturing' sector, the focus was on creating sustainable communities through occupational health and safety issues, sustainable supply chain management, low-carbon technology development, and eco-friendly investments to achieve carbon neutrality. In the 'IT' sector, there was a tendency to focus on technological innovation and digital responsibility to enhance social value through technology. Furthermore, the key issues identified in the ESG factors were as follows: under the 'Environmental' element, issues such as greenhouse gas and carbon emission management, industry-specific eco-friendly activities, and green partnerships were identified. Under the 'Social' element, key issues included social contribution activities through stakeholder engagement, supporting the growth and coexistence of members and partner companies, and enhancing customer value through stable service provision. Under the 'Governance' element, key issues were identified as strengthening board independence through the appointment of outside directors, risk management and communication for sustainable growth, and establishing transparent governance structures. The exploration of the relationship between ESG disclosures in reports and ESG issues in news articles revealed that the sustainability strategies disclosed in reports were aligned with the issues related to ESG disclosed in news articles. However, there was a tendency to strengthen ESG activities for prevention and improvement after negative media coverage that could have a negative impact on corporate image. Additionally, environmental issues were mentioned more frequently in news articles compared to ESG reports, with environmental-related keywords being emphasized in the 'Finance' sector in the reports. Thus, ESG reports and news articles shared some similarities in content due to the sharing of information sources. However, the impact of media coverage influenced the emphasis on specific sustainability strategies, and the extent of mentioning environmental issues varied across documents. Based on our study, the following contributions were derived. From a practical perspective, companies need to consider their characteristics and establish sustainability strategies that align with their capabilities and situations. From an academic perspective, unlike previous studies on ESG strategies, we present a subdivided methodology through analysis considering the industry-specific characteristics of companies.

Analysis of the Contents of Visiting Nursing Articles on Domestic Portal Sites Using Topic Modeling: Focusing on the Comparison Before and After Coronavirus Disease (토픽 모델링을 이용한 국내 포털사이트 방문간호 기사 내용 분석: 코비드-19 이전과 이후 비교를 중심으로)

  • Lim, Ji Young;Lee, Mi Jin;Kim, Geun Myun;Lee, Ok kyun
    • Journal of Home Health Care Nursing
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Purpose: This study aimed to explore the social perception of visiting nursing before and after coronavirus disease (COVID-19). Methods: This survey-based study used online big data for comparative analysis by classifying the keywords related to visiting nursing searched on domestic portal sites before and after COVID-19. Results: According to the results of analyzing the Intertopic Distance Map based on Latent Dirichlet Allocation in this study, four topics were extracted, two each before and after COVID-19. The first topic before the COVID-19 period was termed "the expansion of visiting nursing subjects and services visiting nursing," while the second was termed "visiting nursing," which is related to customized welfare. The first topic after the COVID-19 period was termed "the suspension and resumption of visiting nursing services," while the second was "the development of a non-face-to-face home visit healthcare system". Conclusion: The results of this study can be used as useful reference data to contribute to future medical service delivery system reform policies starting at the end of COVID-19 and the revitalization of community care for visiting nursing.

An Analysis of Trends on the Safety Area Utilizing Big Data : Focused on Fake News (빅데이터를 활용한 안전분야 트렌드 분석 : 가짜뉴스(fake news)를 중심으로)

  • Joo, Seong Bhin
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.111-119
    • /
    • 2017
  • As of March 2017, fake news is largely focused on political issues. Outside the country, main issues of the fake news have been a hot topic in the US presidential election in 2016 and emerged as a new political and social problem in countries like Germany and France. In Korea, issues of the fake news are also linked with political issues such as presidential impeachment and prosecution, impeachment quota, early election, etc. This phenomenon has recently led to the production and spread of fake news related to safety and security issues as well as political issues in connection with various methods of generating articles and sharing information. As a result, there is a high possibility that the information will be transformed into information that can cause considerable confusion to the public. Therefore, the recognition of such problems means that it is important at this point to consider the related situation analysis and effective countermeasures. To do this, we tried to make accurate and meaningful analysis for the diagnosis, analysis, forecasting and management of issues utilizing Big Data. As a result, it is found that the fake news is continuously generated in relation to the safety and security issue as well as the political issue in the South Korea, and differs from the general form occurring outside the country.

Efficient Topic Modeling by Mapping Global and Local Topics (전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안)

  • Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.69-94
    • /
    • 2017
  • Recently, increase of demand for big data analysis has been driving the vigorous development of related technologies and tools. In addition, development of IT and increased penetration rate of smart devices are producing a large amount of data. According to this phenomenon, data analysis technology is rapidly becoming popular. Also, attempts to acquire insights through data analysis have been continuously increasing. It means that the big data analysis will be more important in various industries for the foreseeable future. Big data analysis is generally performed by a small number of experts and delivered to each demander of analysis. However, increase of interest about big data analysis arouses activation of computer programming education and development of many programs for data analysis. Accordingly, the entry barriers of big data analysis are gradually lowering and data analysis technology being spread out. As the result, big data analysis is expected to be performed by demanders of analysis themselves. Along with this, interest about various unstructured data is continually increasing. Especially, a lot of attention is focused on using text data. Emergence of new platforms and techniques using the web bring about mass production of text data and active attempt to analyze text data. Furthermore, result of text analysis has been utilized in various fields. Text mining is a concept that embraces various theories and techniques for text analysis. Many text mining techniques are utilized in this field for various research purposes, topic modeling is one of the most widely used and studied. Topic modeling is a technique that extracts the major issues from a lot of documents, identifies the documents that correspond to each issue and provides identified documents as a cluster. It is evaluated as a very useful technique in that reflect the semantic elements of the document. Traditional topic modeling is based on the distribution of key terms across the entire document. Thus, it is essential to analyze the entire document at once to identify topic of each document. This condition causes a long time in analysis process when topic modeling is applied to a lot of documents. In addition, it has a scalability problem that is an exponential increase in the processing time with the increase of analysis objects. This problem is particularly noticeable when the documents are distributed across multiple systems or regions. To overcome these problems, divide and conquer approach can be applied to topic modeling. It means dividing a large number of documents into sub-units and deriving topics through repetition of topic modeling to each unit. This method can be used for topic modeling on a large number of documents with limited system resources, and can improve processing speed of topic modeling. It also can significantly reduce analysis time and cost through ability to analyze documents in each location or place without combining analysis object documents. However, despite many advantages, this method has two major problems. First, the relationship between local topics derived from each unit and global topics derived from entire document is unclear. It means that in each document, local topics can be identified, but global topics cannot be identified. Second, a method for measuring the accuracy of the proposed methodology should be established. That is to say, assuming that global topic is ideal answer, the difference in a local topic on a global topic needs to be measured. By those difficulties, the study in this method is not performed sufficiently, compare with other studies dealing with topic modeling. In this paper, we propose a topic modeling approach to solve the above two problems. First of all, we divide the entire document cluster(Global set) into sub-clusters(Local set), and generate the reduced entire document cluster(RGS, Reduced global set) that consist of delegated documents extracted from each local set. We try to solve the first problem by mapping RGS topics and local topics. Along with this, we verify the accuracy of the proposed methodology by detecting documents, whether to be discerned as the same topic at result of global and local set. Using 24,000 news articles, we conduct experiments to evaluate practical applicability of the proposed methodology. In addition, through additional experiment, we confirmed that the proposed methodology can provide similar results to the entire topic modeling. We also proposed a reasonable method for comparing the result of both methods.

A Study on Risk Issues and Policy for Future Society of Digital Transformation: Focusing on Artificial Intelligence (디지털 전환의 미래사회 위험이슈 및 정책적 대응 방향: 인공지능을 중심으로)

  • Koo, Bonjin
    • Journal of Technology Innovation
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • Digital transformation refers to the economic and social effects of digitisation and digitalisation. Although digital transformation acts as a useful tool for economic/social development and enhancing the convenience of life, it can have negative effects (misuse of personal information, ethical problems, deepening social gaps, etc.). The government is actively establishing policies to promote digital transformation to secure competitiveness and technological hegemony, however, understanding of digital transformation-related risk issues and implementing policies to prevent them are relatively slow. Thus, this study systematically identifies risk issues of the future society that can be caused by digital transformation based on quantitative analysis of media articles big data through the Embedded Topic Modeling method. Specifically, first, detailed issues of negative effects of digital transformation in major countries were identified. Then detailed issues of negative effects of artificial intelligence in major countries and Korea were identified. Further, by synthesizing the results, future direction of the government's digital transformation policies for responding the negative effects was proposed. The policy implications are as follows. First, since the negative effects of digital transformation does not only affect technological fields but also affect the overall society, such as national security, social issues, and fairness issues. Therefore, the government should not only promote the positive functions of digital transformation, but also prepare policies to counter the negative functions of digital transformation. Second, the detailed issues of future social risks of digital transformation appear differently depending on contexts, so the government should establish a policy to respond to the negative effects of digital transformation in consideration of the national and social context. Third, the government should set a major direction for responding negative effects of digital transformation to minimize confusion among stakeholders, and prepare effective policy measures.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (비정형 텍스트 분석을 활용한 이슈의 동적 변이과정 고찰)

  • Lim, Myungsu;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Owing to the extensive use of Web media and the development of the IT industry, a large amount of data has been generated, shared, and stored. Nowadays, various types of unstructured data such as image, sound, video, and text are distributed through Web media. Therefore, many attempts have been made in recent years to discover new value through an analysis of these unstructured data. Among these types of unstructured data, text is recognized as the most representative method for users to express and share their opinions on the Web. In this sense, demand for obtaining new insights through text analysis is steadily increasing. Accordingly, text mining is increasingly being used for different purposes in various fields. In particular, issue tracking is being widely studied not only in the academic world but also in industries because it can be used to extract various issues from text such as news, (SocialNetworkServices) to analyze the trends of these issues. Conventionally, issue tracking is used to identify major issues sustained over a long period of time through topic modeling and to analyze the detailed distribution of documents involved in each issue. However, because conventional issue tracking assumes that the content composing each issue does not change throughout the entire tracking period, it cannot represent the dynamic mutation process of detailed issues that can be created, merged, divided, and deleted between these periods. Moreover, because only keywords that appear consistently throughout the entire period can be derived as issue keywords, concrete issue keywords such as "nuclear test" and "separated families" may be concealed by more general issue keywords such as "North Korea" in an analysis over a long period of time. This implies that many meaningful but short-lived issues cannot be discovered by conventional issue tracking. Note that detailed keywords are preferable to general keywords because the former can be clues for providing actionable strategies. To overcome these limitations, we performed an independent analysis on the documents of each detailed period. We generated an issue flow diagram based on the similarity of each issue between two consecutive periods. The issue transition pattern among categories was analyzed by using the category information of each document. In this study, we then applied the proposed methodology to a real case of 53,739 news articles. We derived an issue flow diagram from the articles. We then proposed the following useful application scenarios for the issue flow diagram presented in the experiment section. First, we can identify an issue that actively appears during a certain period and promptly disappears in the next period. Second, the preceding and following issues of a particular issue can be easily discovered from the issue flow diagram. This implies that our methodology can be used to discover the association between inter-period issues. Finally, an interesting pattern of one-way and two-way transitions was discovered by analyzing the transition patterns of issues through category analysis. Thus, we discovered that a pair of mutually similar categories induces two-way transitions. In contrast, one-way transitions can be recognized as an indicator that issues in a certain category tend to be influenced by other issues in another category. For practical application of the proposed methodology, high-quality word and stop word dictionaries need to be constructed. In addition, not only the number of documents but also additional meta-information such as the read counts, written time, and comments of documents should be analyzed. A rigorous performance evaluation or validation of the proposed methodology should be performed in future works.

A self-portrait of the information society: An Arguments on the SNS users' Responsibilities

  • Seo, Ran-Sug
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.8
    • /
    • pp.159-172
    • /
    • 2020
  • Social networking services (SNS) are developing significantly with the Internet and smartphones. It's a friendly social media, but if you think deeply about it, you'll find that it has a variety of faces. It is a communication tool between users, a medium for delivering information, an infrastructure for providing applications, and a community where people with common interests gather. In recent years, business tools, shopping and payment methods are also being swallowed. The influence of the spread of SNS on the real world is also expanding, and the work being dealt with from a sociological perspective is also increasing. Also, if you pay attention to the technical aspects of SNS, it is composed of various technical elements, such as infrastructure that handles large-scale access, user interface that supports comfortable use, and big data analysis to understand people's behavior more deeply. However, I usually use it as usual. However, if you look through SNS, you can see that the situation is surprisingly profound and multifaceted. This study began by looking at the history and current status of SNS and attempted to find its status through comparison with other media. From the point of view of relationship with society, it can be a risk and legal issue when using SNS, such as crimes using bad social media or social media. It is also necessary to comment on the activities on SNS or the guidelines established by the operators. Therefore, various legal issues on SNS will be discussed. Also, as an example of using SNS, I will introduce an example of using SNS in disaster response. From a more technical point of view, you will receive commentary on SNS's network-based technology and SNS's information use, and these articles will help you understand and use SNS safely and help you further utilize or develop SNS.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.