• Title/Summary/Keyword: 비 선형 진동

Search Result 817, Processing Time 0.043 seconds

Equilibrium Fractionation of Clumped Isotopes in H2O Molecule: Insights from Quantum Chemical Calculations (양자화학 계산을 이용한 H2O 분자의 Clumped 동위원소 분배특성 분석)

  • Sehyeong Roh;Sung Keun Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In this study, we explore the nature of clumped isotopes of H2O molecule using quantum chemical calculations. Particularly, we estimated the relative clumping strength between diverse isotopologues, consisting of oxygen (16O, 17O, and 18O) and hydrogen (hydrogen, deuterium, and tritium) isotopes and quantify the effect of temperature on the extent of isotope clumping. The optimized equilibrium bond lengths and the bond angles of the molecules are 0.9631-0.9633 Å and 104.59-104.62°, respectively, and show a negligible variation among the isotopologues. The calculated frequencies of the modes of H2O molecules decrease as isotope mass number increases, and show a more prominent change with varying hydrogen isotopes over those with oxygen isotopes. The equilibrium constants of isotope substitution reactions involving these isotopologues reveal a greater effect of hydrogen mass number than oxygen mass number. The calculated equilibrium constants of clumping reaction for four heavy isotopologues showed a strong correlation; particularly, the relative clumping strength of three isotopologues was 1.86 times (HT18O), 1.16 times (HT17O), and 0.703 times (HD17O) relative to HD18O, respectively. The relative clumping strength decreases with increasing temperature, and therefore, has potential for a novel paleo-temperature proxy. The current calculation results highlight the first theoretical study to establish the nature of clumped isotope fractions in H2O including 17O and tritium. The current results help to account for diverse geochemical processes in earth's surface environments. Future efforts include the calculations of isotope fractionations among various phases of H2O isotopologues with a full consideration of the effect of anharmonicity in molecular vibration.

Uncertainty Analysis on Vertical Wind Profile Measurement of LIDAR for Wind Resource Assessment (풍력자원평가를 위한 라이다 관측 시 풍속연직분포 불확도 분석)

  • Kim, Hyun-Goo;Choi, Ji-Hwee;Jang, Moon-Seok;Jeon, Wan-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.185.1-185.1
    • /
    • 2010
  • 원격탐사(remote sensing)란 관측 대상과의 접촉 없이 멀리서 정보를 얻어내는 기술을 말한다. 기상관측분야에는 이미 소다(SODAR) 장비가 폭넓게 사용되거 왔으나 최근 풍력자원평가(wind resource assessment)를 위한 풍황측정에 SODAR와 더불어 라이다(LIDAR)가 적극적으로 활용되기 시작하고 있다. 참고로 SODAR(SOnic Detection And Ranging)는 수직 및 동서 남북 방향으로 음파를 발생시키고 대기유동에 의해 산란 반사된 에코를 수신하여 진동수 변화와 반사에코 강도를 측정하여 각 방향의 에코자료를 벡터 합성함으로써 풍향 및 풍속을 산출하는 원리이다. 반면 LIDAR(Light Detection And Ranging)는 비교적 최근에 풍황측정 용도로 개발된 레이저 탐지에 바탕을 둔 원거리 센서로, 공기입자(먼지, 수증기, 구름, 안개, 오염물질 등)에 의해 산란된 레이저 발산의 도플러 쉬프트(Doppler shift)를 이용하여 풍향 및 풍속을 측정하는 원격탐사 장비이다. 풍력자원평가 측면에서 라이다는 그 정확도가 IEC61400-12에 의거한 풍황탑(met-mast) 측정자료 다수와의 비교검증 실측평가(Albers et al., 2009)를 통하여 입증된 바 있다. 한편 한국에너지기술연구원에서 운용 중인 라이다 시스템은 그림 1의 우측 그림과 같이 1초에 $360^{\circ}$를 스캔하여 50지점에서 반사되는 레이저를 스펙트럼으로 측정하되 설정된 관측높이에서 풍속은 샘플링 부피(sampling volume)의 평균값으로 정의된다. 그런데 샘플링 부피는 설정된 관측높이로부터 상하 12.5m, 총 25m의 높이구간에서 관측한 스펙트럼의 평균값을 그 중앙지점에서의 풍속으로 환산하는 알고리듬(algorithm)을 채택하고 있다. 따라서 비선형적으로 변화하는 풍속연직분포 관측 시 풍속환산 알고리듬에 의한 측정오차가 개입될 가능성이 존재하는 것이다. 이에 본 연구에서는 라이다에 의한 풍속연직분포 측정 시 샘플링 부피의 구간 평균화 과정에서 발생하는 불확도(uncertainty)를 정량적으로 분석함으로써 라이다에 의한 풍속연직분포 관측의 불확도를 정량평가하고자 한다.

  • PDF

Nonlinear Motion Analysis of FPSO and Shuttle Tanker in a Tandem Configuration (탠덤 배치된 FPSO와 셔틀탱커의 비선형 운동 해석)

  • Lim, Choon-Gyu;Lee, Ho-Young;Shin, Hyung-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.5 s.149
    • /
    • pp.560-567
    • /
    • 2006
  • FPSO and shuttle tanker are connected to each other by a mooring hawser and a loading hose through which cargo oil is off-loaded. Even in mild sea-state. environmental loads can cause unstable large drift motions between two vessels in tandem off-loading operations, which may result in collision incidents. Accordingly. the analysis on the relative motion between two vessels due to the environmental loads should be investigated in initial design stage. In this study, the low speed maneuvering equation is employed to simulate nonlinear motions of FPSO and shuttle tanker. Low frequency wave drift forces including hydrodynamic interactions between two vessels are evaluated by near field approaches. Current loads are determined by mathematical model of MMG and wind loads are calculated by employing the wind spectrum according to the guidelines of API-RP2A. Mooring forces produced by turret mooring lines and a flexible hawser are modeled quasi-statically by catenary equations. The effect of environmental loads that affect nonlinear motion is investigated through variation in their magnitudes and the nonlinear motions between FPSO and shuttle tanker are simulated under wave, current and wind in time domain.

Vibration Analysis of AFM Microcantilevers Using an Equivalent Stiffness Element Model (등가강성요소 모델을 이용한 AFM 마이크로캔틸레버의 진동해석)

  • Han, Dong Hee;Kim, Il Kwang;Lee, Soo Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.461-466
    • /
    • 2015
  • Atomic force microscopy (AFM) is powerful tool for determining properties of samples based on interactions between the sample surface and an approaching probe tip. In this study, we modeled the interactions between the sample and the tip of the AFM microcantilever as a single nonlinear spring with an equivalent stiffness element and simulated the dynamic behaviors of the AFM microcantilevers using the finite element method (FEM) and ANSYS software. With the simulation results, we analyzed the complex dynamic responses of the AFM cantilever using proper orthogonal decomposition (POD). In addition, we compared the simulation and experimental results using the same method. Consequently, we suggest an effective method to express the interaction between the tip and sample, and we confirm that the influence of the higher order model due to the interaction between the tip and sample is increased.

The Patterns of Streamwise Vortex on the Fuel Surface in Hybrid Rocket Combustion (하이브리드 로켓 모터 연소 중 발생하는 streamwise 와류 특성)

  • Shin, Kyung-Hoon;Park, Kyung-Su;Mon, Khin Oo;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.649-652
    • /
    • 2011
  • A series of hybrid rocket combustion experiments were carried out with PMMA/GOx changing diameter and length of the disk installed at pre-chamber. The disk can generate vortex shedding flow and change flow conditions prior to entering the fuel grain which could also alter the combustion characteristics and pressure oscillations. Isolated dimple-like surface roughness patterns distributed all over the fuel surface, which can be thought of as a realization of the inherent flow instability. It is very likely that the formation of cell structures is originated from the modification of boundary layer characteristics of an entering oxidizer flow caused by a blowing effect mainly taking place near the wall. This coincided with our LES results. It would be a meaningful basis to understand combustion instability of hybrid rocket motor.

  • PDF

A Study on Effect of Shotcrete Adhesive Strength on Large Section Rock Tunnel Stability (대단면 암반터널의 안정성에 미치는 숏크리트 부착강도의 영향에 관한 연구)

  • Chang, Seok-Bue;Hong, Eui-Joon;Moon, Sang-Jo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.305-311
    • /
    • 2005
  • Shotcrete adhesive strength in large section tunnels in jointed rock masses plays an important role in preventing rock block from falling and shotcrete debonding due to blasting vibration. Nevertheless, it has not been considered as a major factor such as shotcrete compressive strength in design and construction. For this reason, the purpose of this study is to analyze the effect on shotcrete adhesive strength for large-sectioned tunnels. First, the parametric study using numerical model similar to Holmgren's punch-loaded test was executed for various range of adhesive strength. It shows that the shotcrete bearing capacity is linearly proportioned to the adhesive strength between shotcrete layer and blocks. And then, distinct element analysis of a jointed rock tunnel for an adhesive strength of 1 MPa and a conventional fully-bonded condition between the shotcrete layer and the excavation face was compared in order to evaluate the effect of the shotcrete adhesive strength.

  • PDF

Development of Degenerated Beam Elements Using Higher-Order Displacement Profile (고차(高次) 변위(變位)를 고려(考慮)한 요소(要素)의 해석(解析))

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.75-86
    • /
    • 1982
  • The degeneration of two classes of thick beam elements has been conducted, one (DB6) based on the conventional Timoshenko beam assumptions whereas the other (DB7) based on the assumed cubic axial displacement profile. While an adjustable shear correction factor is required for the DB 6 element to compensate for the unrealistic distribution of shear strain across the thickness, the DB 7 element assumes the more realistic quadratic profile of shear strain at the outset. With the plane-stress continuum solution as reference, solutions obtained by these two element models are compared with the analytical Timoshenko solution, the analytical thin beam solution and several available solutions of other existing beam elements. The result indicates that the performance of the higher order beam element DB 7 is consistently superior to any others. This is true for the whole range of aspect ratios of beam, in both static and free vibration analyses.

  • PDF

An Experimental Study on the Stability of Rubble Mound Structures by Wave Directionality (사석방파제의 안정성에 미치는 방향성효과에 관한 실험적 연구)

  • 손병규;류청로
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.139-148
    • /
    • 2001
  • Phenomena induced by waves, such as overtopping, sediment transport, vibration/fluctuation and destruction of structures are highly influenced by the directionality of wave propagation. These phenomena are often dominated by non-linearity, and so hydraulic model experiments are widely adopted for stability analysis rather than numerical modeling, Thus, stability ofrubblc mound breakwaters(RMB) due to wavc directionality was experimentally investigated in this study. The incident wave angle $30^{\circ}$ was found more risky on the damage rate of RMB under directional regular waves, and the incident wave angle $40^{\circ}$ was found relatively risky under directional irregular waves. These results clarified the wave directionality effect on the stability ofRMB, These facts were found correspondent to the occurrence of the peak between $20^{\circ}$-$40^{\circ}$ with the directional frequency distribution of lIlO maximum water particle velocity.

  • PDF

Design Optimization of Passive Control Devices for Dynamic Stall Control (동적실속 수동제어장치 최적설계)

  • Joo, Wan-Don;Lee, Bo-Sung;Yee, Kwan-Jung;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.11-19
    • /
    • 2005
  • In order to improve dynamic stall characteristics of an oscillating airfoil, optimal design has been performed for fixed nose droop and Gurney flap. Fixed nose droop is known to be very effective to improve pitching moment characteristics but may cause degeneration of aerodynamic lift at the same time. On the other hand, Gurney flap has the opposite characteristics. For fixed nose droop, location and angle are chosen as design variables, while length is defined as design variable for Gurney flap. Higher order response surface methodology and sensitivity based optimal design method are employed to handle highly nonlinear problem such as dynamic stall. Optimal design has been performed so that lift and pitching moment are simultaneously improved. The design results show that aerodynamic characteristics can be remarkably improved through present design approach and the present passive control method is as good as active control method which combines variable nose droop and Gurney flap.

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (경주지역에서 발생한 3개 지진의 지진원 및 지진파전파 매질특성에 관한 연구)

  • Jung, Je-Won;Kim, Jun-Kyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.1 s.47
    • /
    • pp.33-39
    • /
    • 2006
  • Parameters including the seismic sources and the elastic wave propagation characteristics were analysed using the observed ground motions from 3 Kyoungju region earthquakes. The Levenberg-Marquardt algorithm was applied to invert all the variables non-linearly and simultaneously with S wave energy In frequency domain. Average stress drop of 3 events and local attenuation parameter ${\kappa}$ were estimated to about 48-bar and 0.0312 respectively. Regional attenuation parameter, Qo and ${\eta}$, were also estimated to be about 417 and 0.83. ${\kappa}$ values are much higher than that of EUS, even though smaller than that of WUS. All these values resultant from this study show that there are differences in some parameters of other studios due to differences in the governing equation. of acceleration motions