• Title/Summary/Keyword: 비행 경로

Search Result 329, Processing Time 0.027 seconds

Optimal height of installing sticky traps for monitoring fungus gnats (버섯파리류 예찰을 위한 끈끈이트랩의 최적 설치위치)

  • Yoon, Jung-Beom;Kim, Hyeong-Hwan;Kim, Dong-Hwan;Yang, Chang-Yeol;Seo, Mi-Hey
    • Journal of Mushroom
    • /
    • v.16 no.1
    • /
    • pp.57-60
    • /
    • 2018
  • Agricultural sticky traps are used for forecasting flying insects, including fungus gnat adults. Forecasting using sticky trap is an important measure to determine pesticides or environmentally friendly control means. Sticky traps of various colors can be installed easily and quickly. The yellow sticky trap is most effective for forecasting fungus gnat adults. In addition, they are used for control purposes by mass trapping. We tested the optimum installation height of yellow sticky traps to forecast and control the fungus gnat adults effectively in the cultivation of mushroom and horticultural plants. The number of captured fungus gnat adults was highest on the second floor for button mushroom and oyster mushroom, 100 cm above the floor for sawdust shiitake mushroom, 20 cm under the floor for hydroponic strawberry, and 20 cm above the floor for hydroponic tomato. This suggests that sticky trap height should be installed differently depending on the cultivation type or environment for effective forecasting and control of fungus gnat adults.

A Study on Method to prevent Collisions of Multi-Drone Operation in controlled Airspace (관제 공역 다중 드론 운행 충돌 방지 방안 연구)

  • Yoo, Soonduck;Choi, Taein;Jo, Seongwon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.103-111
    • /
    • 2021
  • The purpose of this study is to study a method for preventing collisions of multiple drones in controlled airspace. As a result of the study, it was proved that it is appropriate as a method to control drone collisions after setting accurate information on the ROI (Region of Interest) area estimated based on the expected drone path and time in the control system as a method to avoid drone collision. As a result of the empirical analysis, the diameter of the flight path of the operating drone should be selected to reduce the risk of collision, and the change in the departure time and operating speed of the operating drone did not act as an influencing factor in the collision. In addition, it has been demonstrated that providing flight priority is one of the appropriate methods as a countermeasure to avoid collisions. For collision avoidance methods, not only drone sensor-based collision avoidance, but also collision avoidance can be doubled by monitoring and predicting collisions in the control system and performing real-time control. This study is meaningful in that it provided an idea for a method for preventing collisions of multiple drones in controlled airspace and conducted practical tests. This helps to solve the problem of collisions that occur when multiple drones of different types are operating based on the control system. This study will contribute to the development of related industries by preventing accidents caused by drone collisions and providing a safe drone operation environment.

Active Fault Tolerant Control of Quadrotor Based on Multiple Sliding Surface Control Method (다중 슬라이딩 표면 제어 기법에 기반한 쿼드로터의 능동 결함 허용 제어)

  • Hwang, Nam-Eung;Kim, Byung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.59-70
    • /
    • 2022
  • In this paper, we proposed an active fault tolerant control (AFTC) method for the position control of a quadrotor with complete loss of effectiveness of one motor. We obtained the dynamics of a quadrotor using Lagrangian equation without small angle assumption. For detecting the fault on a motor, we designed a fault detection module, which consists of the fault detection and diagnosis (FDD) module and the fault detection and isolation (FDI) module. For the FDD module, we designed a nonlinear observer that observes the states of a quadrotor based on the obtained dynamics. Using the observed states of a quadrotor, we designed residual signals and set the appropriate threshold values of residual signals to detect the fault. Also, we designed an FDI module to identify the fault location using the designed additional conditions. To make a quadrotor track the desired path after detecting the fault of a motor, we designed a fault tolerant controller based on the multiple sliding surface control (MSSC) technique. Finally, through simulations, we verified the effectiveness of the proposed AFTC method for a quadrotor with complete loss of effectiveness of one motor.

Hypersonic Weapons and National Security (극초음속 무기체계의 개발 경쟁과 국가 안보의 함의)

  • Son, Hyun-Seung;Lee, Ho-il;Ko, Duk-Gon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.56-69
    • /
    • 2022
  • Various advanced countries are accelerating the competition in the development of hypersonic weapons. North Korea is on the verge of building a new submarine equipped with a submarine-launched ballistic missile (SLBM). A series of new guided missiles tests have continued due to political competition between the U.S. and China. The Republic of Korea is planning to boost its military capabilities, which involves the development of nuclear-powered submarines, light aircraft carriers, and new guided missiles. The northeast Asian region continues to be tense amid military rivalry between the Republic of Korea, North Korea, the United States, China, Russia, and Japan. Accordingly, these countries' competition to develop weapons is also at the world's highest level. In this paper, we examine the functioning of a hypersonic weapons system conduct a technical analysis of its components. In addition, we analyze the direction of military development that the Korean military wants to pursue through the recently announced mid-term defense plan. We conclude by highlighting the technical limitations and implementation strategies to overcome the development of hypersonic weapons.

Unsupervised Learning-Based Threat Detection System Using Radio Frequency Signal Characteristic Data (무선 주파수 신호 특성 데이터를 사용한 비지도 학습 기반의 위협 탐지 시스템)

  • Dae-kyeong Park;Woo-jin Lee;Byeong-jin Kim;Jae-yeon Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.147-155
    • /
    • 2024
  • Currently, the 4th Industrial Revolution, like other revolutions, is bringing great change and new life to humanity, and in particular, the demand for and use of drones, which can be applied by combining various technologies such as big data, artificial intelligence, and information and communications technology, is increasing. Recently, it has been widely used to carry out dangerous military operations and missions, such as the Russia-Ukraine war and North Korea's reconnaissance against South Korea, and as the demand for and use of drones increases, concerns about the safety and security of drones are growing. Currently, a variety of research is being conducted, such as detection of wireless communication abnormalities and sensor data abnormalities related to drones, but research on real-time detection of threats using radio frequency characteristic data is insufficient. Therefore, in this paper, we conduct a study to determine whether the characteristic data is normal or abnormal signal data by collecting radio frequency signal characteristic data generated while the drone communicates with the ground control system while performing a mission in a HITL(Hardware In The Loop) simulation environment similar to the real environment. proceeded. In addition, we propose an unsupervised learning-based threat detection system and optimal threshold that can detect threat signals in real time while a drone is performing a mission.

Analysis and Implication on the International Regulations related to Unmanned Aircraft -with emphasis on ICAO, U.S.A., Germany, Australia- (세계 무인항공기 운용 관련 규제 분석과 시사점 - ICAO, 미국, 독일, 호주를 중심으로 -)

  • Kim, Dong-Uk;Kim, Ji-Hoon;Kim, Sung-Mi;Kwon, Ky-Beom
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.32 no.1
    • /
    • pp.225-285
    • /
    • 2017
  • In regard to the regulations related to the RPA(Remotely Piloted Aircraft), which is sometimes called in other countries as UA(Unmanned Aircraft), ICAO stipulates the regulations in the 'RPAS manual (2015)' in detail based on the 'Chicago Convention' in 1944, and enacts provisions for the Rules of UAS or RPAS. Other contries stipulates them such as the Federal Airline Rules (14 CFR), Public Law (112-95) in the United States, the Air Transport Act, Air Transport Order, Air Transport Authorization Order (through revision in "Regulations to operating Rules on unmanned aerial System") based on EASA Regulation (EC) No.216/2008 in the case of unmanned aircaft under 150kg in Germany, and Civil Aviation Act (CAA 1998), Civil Aviation Act 101 (CASR Part 101) in Australia. Commonly, these laws exclude the model aircraft for leisure purpose and require pilots on the ground, not onboard aricraft, capable of controlling RPA. The laws also require that all managements necessary to operate RPA and pilots safely and efficiently under the structure of the unmanned aircraft system within the scope of the regulations. Each country classifies the RPA as an aircraft less than 25kg. Australia and Germany further break down the RPA at a lower weight. ICAO stipulates all general aviation operations, including commercial operation, in accordance with Annex 6 of the Chicago Convention, and it also applies to RPAs operations. However, passenger transportation using RPAs is excluded. If the operational scope of the RPAs includes the airspace of another country, the special permission of the relevant country shall be required 7 days before the flight date with detail flight plan submitted. In accordance with Federal Aviation Regulation 107 in the United States, a small non-leisure RPA may be operated within line-of-sight of a responsible navigator or observer during the day in the speed range up to 161 km/hr (87 knots) and to the height up to 122 m (400 ft) from surface or water. RPA must yield flight path to other aircraft, and is prohibited to load dangerous materials or to operate more than two RPAs at the same time. In Germany, the regulations on UAS except for leisure and sports provide duty to avoidance of airborne collisions and other provisions related to ground safety and individual privacy. Although commercial UAS of 5 kg or less can be freely operated without approval by relaxing the existing regulatory requirements, all the UAS regardless of the weight must be operated below an altitude of 100 meters with continuous monitoring and pilot control. Australia was the first country to regulate unmanned aircraft in 2001, and its regulations have impacts on the unmanned aircraft laws of ICAO, FAA, and EASA. In order to improve the utiliity of unmanned aircraft which is considered to be low risk, the regulation conditions were relaxed through the revision in 2016 by adding the concept "Excluded RPA". In the case of excluded RPA, it can be operated without special permission even for commercial purpose. Furthermore, disscussions on a new standard manual is being conducted for further flexibility of the current regulations.

  • PDF

2DEG Transport Analysis in AlGaAs/GaAs Interface by MONTE-CARLO Method (MONTE-CARLO 방법에 의한 AlGaAs/GaAs 계면의 전자 전달특성 분석)

  • Nam, Seung-Hun;Jung, Hak-Ki;Kim, Bong-Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.2
    • /
    • pp.94-101
    • /
    • 1989
  • Transport properties of 2DEG at AlGaAs/GaAs interface such as average electron energy, flight distance, each valley occupancy ratio, average electron velocity for various fields are investigated by MONTE-CARLO method. As the electric field increases, more electrons transit drastically from (000) valley to (000) upper valley. This phenomenon shows the nonstationary effect such as velocity overshoot. The duration of the transient decreases from about 1.4 psec for electric field E = 7KV/cm to about 0.7 psec for 12KV/cm. The average electron velocity during transient transport in 2DEG is about 8 times the steady-state velocity for E = 12KV/cm at room temperature. In comparison with bulk GaAs the peak velocity in the 2DEG is higher than that in even pure bulk GaAs at electric field E = 7 KV/cm. On the basis of the fact that the electrons in the 2DEG have larger peak velocity and shorter transient time of velocity than those in the bulk GaAs, it is suggested that the device with 2DEG may obtain higher mobility than that with bulk GaAs.

  • PDF

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Adolescent's Risk Behavior and the Quality of Life: the Role of Protective Factors on Risk Behavior (청소년의 위험행동과 삶의 질: 위험행동에 대한 보호요인의 역할)

  • Sang-Chul Han
    • Korean Journal of Culture and Social Issue
    • /
    • v.12 no.5_spc
    • /
    • pp.99-116
    • /
    • 2006
  • This paper discuss adolescent's a quality of life related with risk behavior. The purpose of this study investigate to influence on risk behavior(runaway, smoking, sexual behavior) of the protective factors that moderate adolescent's problem behavior(delinquency). The assumption of this study that the protective factors counterbalance the negative influence of risk factors and finally, diminish a the problem behavior including a delinquent. A total of 1,020 students of a vocational high schook and a 216 adolescents of a special groups(the public institution that consisted with a delinquent young man) completed the questionnaires(risk behavior, 5 protective factors) of compiled by this researcher. The protective factors have selected based on the various prior studies analyzed with adolescent's risk behavior a family functioning, a father(a mother) each and child communication, a self efficacy, and a social support. Statistics appled for the data analysis are Chisqure analysis, two-way ANOVA, and Standard Discrimination analysis. The results of this study are as follows. First, the special group is higher than the general group in the rate of runaway, smoking, and sexual deviant behavior. Second, the protective factors are not action in the special group have experienced delinquency, but are only action in the general group consisted with the students of a vocational high schools. This means that the protective factors discriminating the participation of the risk behaviors, and blocking out the intervention of a problem behavior in the general adolescents. Although each protective factor influence to different according to each risk behavior, a role of a parent-child communication, a family functioning, and self-efficacy high orderly. Finally, discussed based on the previous studies that the protective factors moderate the negative influence of risk factors, offset the connection between a risk behavior and a. problem behavior, and improve and a resilience and the quality of life of the adolescents.