• Title/Summary/Keyword: 비표면적

Search Result 935, Processing Time 0.024 seconds

Effect of Copper toxicant on Suspended and Attached Growth Nitrifying Bacteria (부유 및 부착성장 질화균에 미치는 구리 독성의 영향)

  • Kim, Keum-Yong;Paek, Joo-Heon;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.855-864
    • /
    • 2009
  • The effect of toxicant on the inhibition of nitrification was investigated, using concentrated nitrifying bacteria of both attached and suspended growth. This nitrifying organism was originally obtained from the activated sludge of sewage treatment plant and cultivated for more than three months. The object of this experiment is to determine the effect of the specific surface area and the growth condition of nitrifying bacteria on toxicity of heavy metal. The results of this study were as follows. The specific surface area of both attached and suspended growth of nitrifying organism was proven to be a major factors in determining the inhibition of nitrification of heavy metal such as $Cu^{++}$ion. When the condition of attachment and detachment was compared in an experiment using attached growth nitrifier, the effect on toxicant was 1.12 times less in attached condition than in detached condition for Nitrosomonas, and 1.09 times less for Nitrobacter. In case of suspended growth nitrifier, the effect on toxicant was 1.46 times less in non-ground condition than in ground condition for Nitrosomonas, and 1.35 times less for Nitrobacter. Also, similar results were obtained in a set of experiments, without adding nitrite to the substrate. In an experiment that compared attached condition using attached growth nitrifier with detached condition using attached growth nitrifier, the effect on toxicant was 1.83 times less in attached condition than in detached one for Nitrosomonas, and 1.78 times less for Nitrobacter. In case of suspended growth nitrifier, the effect on toxicant was 1.27 times less in non-ground condition than in ground condition for Nitrosomonas, and 1.32 times less for Nitrobacter.

A Study on the Evaluation of Adsorption Characteristics of VOCs on TiO2 and Al2O3 and Investigation of the Thermal Durability by Molding Various Structures (TiO2와 Al2O3의 기상 VOCs 흡착 특성 평가 및 다양한 구조체로의 성형을 통한 열적 내구성 확보에 관한 연구)

  • Hwang, In-Hyuck;Lee, Sang Moon;Kim, Sung Su
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.280-286
    • /
    • 2018
  • In this study, the adsorption performance of vapor phase VOCs under dry conditions was evaluated by using two metal oxides, $TiO_2$ powder and $Al_2O_3$ powder. BET analysis and ammonia in-situ FT-IR analysis were used to analyze specific surface area and surface acid site. As a result, $TiO_2$ powder and $Al_2O_3$ powder had a specific surface area of $317.6m^2\;g^{-1}$ and $64m^2\;g^{-1}$, respectively. In the case of $TiO_2$ powder, many acid sites were observed on the surface. As a result of evaluating the vapor phase VOCs adsorption performance using two metal oxide powders, $TiO_2$ powder having a relatively large specific surface area and a large number of acid sites exhibited relatively good adsorption performance. In particular, it is considered that the specific surface area directly affects the adsorption performance, and further study on the effect of the acid site is required. Based on the $TiO_2$ exhibited excellent adsorption performance, it manufactured into various forms of honeycomb, hollow fiber and disc. As a result, the adsorption performance was lower than that of the powder, but it is advantageous in view of applicability. In addition, it was confirmed that the disc adsorbent having excellent thermal durability due to the characteristics of the manufacturing process stably maintains adsorption performance even at a high temperature desorption process several times.

Specific Surface Area Characteristic Analysis of Porous Carbon Prepared from Lignin-Polyacrylonitrile Copolymer by Activation Conditions (리그닌-PAN 공중합체로 제조한 다공성 탄소 소재의 활성화 처리 조건에 따른 비표면적 특성 연구)

  • LEE, Hyunsu;KIM, Seokju;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.299-314
    • /
    • 2021
  • In this study, we investigated the effect of temperature on specific surface area and electrochemical properties when lignin-based porous carbon (LBPC) with potassium hydroxide (KOH) is activated. After preparing LBPCs using lignin-polyacrylonitrile (PAN) copolymer, which was synthesized by graft polymerizing lignin and acrylonitrile as a precursor, activated LBPCs (KA-LBPC-6, 7, 8, 9) were manufactured by activating LBPC with KOH at 600℃, 700℃, 800℃ and 900℃. To identify the surface characteristics of KA-LBPC, observations were made with a scanning electron microscopy (SEM), and the pore characteristics were identified via specific surface area analysis. The electrochemical properties were analyzed using a three-electrode system. The experiment has shown that micropores formed by activation can be observed in SEM images. KA-LBPC-7 had the best pore characteristics among KA-LBPCs, with a specific surface area of 2480.1 m2/g, a micropore volume of 0.64 cm3/g, and a mesopore volume of 0.76 cm3/g. KA-LBPC-7 showed the best electrochemical properties with a specific capacitance of 151.3 F/g at the scan rate of 2 mV/s.

Synthesis, Characterization and Ammonia Decomposition Reaction Activity of Vanadium Oxynitride Obtained from the Reduction/Nitridation of Vanadium Oxide (바나디움 산화물의 환원 및 질화반응으로부터 얻어진 바나디움 산화질화물의 제조, 특성분석 및 암모니아 분해반응에서의 촉매 활성)

  • Yun, Kyung Hee;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.620-629
    • /
    • 2022
  • By varying various experimental conditions such as heating rate, molar hourly space velocity (MHSV), and nitridation reaction temperature, vanadium oxynitride was prepared through temperature programmed reduction/nitridation reaction (TPRN) of vanadium pentoxide and ammonia, and characterization were performed. In order to investigate the physico-chemical properties of the prepared catalyst, N2 adsorption-desorption analysis, X-ray diffraction analysis (XRD), hydrogen temperature programmed reduction (H2-TPR), temperature programmed oxidation (TPO), ammonia temperature programmed desorption (NH3-TPD), transmission electron microscopy (TEM) was performed. Transformation of V2O5 with 5 m2 g-1 low specific surface area by reduction at 340 ℃ to V2O3 showed a high specific surface area value of 115 m2 g-1 by micropore formation. As the nitridation temperature increased beyond that, the specific surface area continued to decrease due to sintering. The nitridation reaction variable that had the greatest influence on the specific surface area was the reaction temperature, and the x + y value of VNxOy of a single phase approached from 1.5 to 1.0 as the nitridation reaction temperature increased. At a high reaction temperature of 680 ℃, the cubic lattice constant a was VN. close to the value. At 680 ℃, the highest nitridation temperature among the experimental conditions, the ammonia conversion rate was 93%, and no deactivation was observed.

Surface analysis of rayon-based carbon nanofibers and activated carbon fibers (레이온을 이용한 카본나노섬유와 활성카본섬유의 표면 특성분석)

  • Kim, Youn Jung;Ryu, Sang Hoon;Lim, Woo Taik;Choi, Sik Young
    • Analytical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.296-301
    • /
    • 2007
  • Carbon nanofibers (CNFs) are non-microporous materials with a high surface area ($100{\sim}200m^2/g$) and high purity. Therefore, the material has a high potential for use as catalyst support. Activated carbon fibers (ACFs) are of increasing concern with regard to the levels of toxic air pollutants emitted from high-technology industry. Rayon-based CNFs and ACFs was subjected to thermal oxidation under a wide variety of temperature and air conditions to modify the surface properties. Rayon-based CNFs and ACFs were prepared by using thermal chemistry. CNFs were synthesized at temperatures above $600^{\circ}C$ in an air atmosphere and grew with increased temperature and air conditions. After heating at $800^{\circ}C$ for 72 hr, carbonized rayon with ACFs had $2,662m^2/g$ (BET) of surface area and $1.41cm^3/g$ of pore volume. The resulting ACFs had a 99% surface area in which pore size was 10 nm or less, and a 60 % surface area in which pore size was 2 nm or less.

Adsorption Characteristics of Biochar from Wood Waste by KOH, NaOH, ZnCl2 Chemical Activation (폐목재를 이용한 KOH, NaOH, ZnCl2 화학적 활성화로 생성된 바이오차의 흡착특성에 관한 연구)

  • MinHee Won;WooRi Cho;Jin Man Chang;Jai-young Lee
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.272-278
    • /
    • 2023
  • There is a lot of interest in methods for pollutants using adsorption, and recent research is being conducted to show that biochar can be used to remove organic and inorganic pollutants. In particular, wood waste as waste biomass requires a biomass recycling method, and a method to increase the adsorption capacity of biochar produced using wood waste is needed. Biochar is created by Hydrothermal carbonization (HTC) using, which uses low temperature and high pressure, has low energy consumption and does not require moisture removal pretreatment, and biochar is created through chemical activation using KOH, NaOH, and ZnCl2 chemicals. The adsorption characteristics of biochar were determined by analyzing iodine adsorptivity, specific surface area, pore diameter, pore volume, pore distribution, and SEM according to the activation. The results of analyzing the selecting biochar by activating the biochar produced at HTC 300℃, 4 hr by KOH, NaOH, and ZnCl2 chemicals, the specific surface area was 774~1.387 m2/g, showing a high specific surface area similar to activated carbon, and it was confirmed that micropores with an average pore diameter in the range of 21~24 Å were formed. As a result of SEM observation, the surface was uniform with a certain shape depending on activation. It was confirmed that one pore was developed and the number of pores increased.

A Study on the Explosion Riskiness with Flying of Activated Carbon (활성탄의 부유중 폭발 위험성에 관한 연구)

  • 김정환;현성호;이창우;함영민
    • Fire Science and Engineering
    • /
    • v.12 no.3
    • /
    • pp.3-9
    • /
    • 1998
  • We investigated the weight loss according to temperature using TGA in order to find the thermal hazard of brand-new activated-carbon and disused activated-carbon dusts, and the properties of dust explosion in variation of the specific surface area of their dust with the same particle size. Using hartman's dust explosion apparatus which estimate dust explosion by electric ignition after making dust disperse by compressed air, dust explosion experiments have been conducted by varying concentration and size of activated carbon dust. The explosion pressure of both activated carbon increased as the specipic surface area increased. The results indicated that brand-new activated-carbon of which specific surface area was larger three to four times than that of disused activated-carbon was much easier of dust explosion.

  • PDF

Pyrolysis Characteristics of Sludge Discharged from Paper Mill Process (제지공정에서 발생하는 슬러지의 열분해 특성)

  • Ko, Jae-Churl;Kim, Seung-Ho;Park, Young-Koo;Jeon, Jea-Yeoul;Kim, Jin-Ho;Park, Joon-Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2009
  • This research was conducted to evaluate pyrolysis characteristics of the sludge discharged from paper mill process with sintering temperature. The sludge was composed of 70.72% of moisture, 9.52% of volatile solids, and 19.76% of ash, respectively. The sludge contained high 66.40% of $Fe_2O_3$ and CaO(15.80%), $Al_2O_3$(9.42%), and $SO_3$(3.75%) components, and minor $SiO_2$, $Na_2O$, and $Cr_2O_3$ were also contained in it. The other components except $Fe_2O_3$ and $Cr_2O_3$ were slightly decreased with increase of sintering temperature. Specific surface area of the sludge before sintering was $130m^2/g$ and ones after sintering at $400^{\circ}C$ and $700^{\circ}C$ were $114m^2/g$ and $33m^2/g$ respectively. Specific surface area of sludge was decreased with increase of sintering temperature. From the result of TG-DTA, it was shown that weight of the sludge was decreased by moisture and organic loss until $600^{\circ}C$ and decreased by volatilization of metal components and additional combustion of carbon until $800^{\circ}C$.

아크릴 폐직물을 이용하여 제조한 활성탄소의 기공구조 발현 과정

  • 유소영;윤창훈;박연흠;박종래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.489-492
    • /
    • 1998
  • 흡착 기능을 가지는 소재로서 오래 전부터 사용되어 온 활성탄소는 최근 환경에 대한 관심이 고조되면서 새삼 주목의 대상이 되고 있는 소재이다. 제품의 형태는 사용 목적에 따라 다르지만 보편화 된 것은 주로 입상 및 분말 상이다. 하지만 이러한 형태는 비표면적이 작고 기공분포가 넓은 단점 때문에 미세 오염물의 제거에는 부적합한 면이 있다[1]. (중략)

  • PDF