• Title/Summary/Keyword: 비표면적

Search Result 935, Processing Time 0.028 seconds

Preparation and Adsorption-photocatalytic Activity Evaluation of TiO2-Coconut Shell Powder Composite (TCSPC) (TiO2-Coconut Shell Powder Carbon 복합체 (TCSPC) 제조 및 흡착 광촉매 산화 활성 평가)

  • Lee, Min Hee;Kim, Jong Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.357-362
    • /
    • 2015
  • A novel $TiO_2$-Coconut Shell Powder Composite (TCSPS), prepared by the controlled sol-gel method with subsequent heat treatment, was evaluated as an innovative photocatalytic absorbent for the removal of methylene blue. Optimal preparation conditions of TCSPC were obtained by a response surface methodology and a central composite design model. As compared with the results obtained from one-factor-at-a-time experiments, the values were approximated to the nearest condition of these values and the following experimental parameters were set as the optimum : $600^{\circ}C$ calcination temperature and 20 g of coconut shell powder loading amount.

A study on the characteristics of limestone calcination and sulfation in a fluidized bed (유동층반응기를 이용한 석회석소성 및 황화반응 특성 연구)

  • Cho, Sang-Won;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.3 no.1
    • /
    • pp.106-113
    • /
    • 1997
  • The objectives of this study were to investigate the characteristics of limestone calcination and sulfation in a fluidized bed reactor with bed temperature and air velocity. The experimental results were presented as follows ; First, the bed temperature had a great influence on the calcination and the sulphur retention of limestone and paper sludge. In paper sludge, the optimum conditions in calcination and desulfurization temperature was at $800^{\circ}C$ and in natural limestone, that was at $850^{\circ}C$ or $900^{\circ}C$. Second, as air velocity increased, the specific surface area of particles decreased. But the difference of surface area according to air velocity was not too large. The specific surface area of paper sludge was larger than that of natural limestone. Third, as air velocity increased, the absorbed amount of sulfur dioxide decreased. And the absorbed amount of sulfur dioxide by paper sludge was larger than that of by natural limestone. Therefore, we knew that paper sludge was excellent absorbent and bed temperature had a great important variable on the calcination and sulphur retention in a fluidized bed.

  • PDF

Effect of Operating Parameters on the Physical Properties of Activated Carbon Manufactured with Bead-Type Polymer Resin (구형 고분자수지로 활성탄제조 시 운전인자의 영향)

  • Lee, Gangchoon;Yoon, Taekyung;Shon, Zangho
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.279-286
    • /
    • 2013
  • Using a cation exchange resin of polystyrene-DVB copolymer as a carbon source for the production of activated carbon, the effects of operating parameters on the physical properties of activated carbon such as specific surface area and specific pore volume were experimentally studied. In carbonization process specific surface area and specific pore volume of carbonized product decreased with the increase of carbonization temperature and time. They were proportional to activation temperature and time up to the specific temperature and time in activation process. In carbonization process the increase of heating rate gave negative effect to the properties. The properties of activated product, on the contrary, increased with the heating rate in carbonization process. The properties of activated carbon manufactured with the resin exchanged with divalent cations were lower than those with raw resin.

The Electrochemical Characteristics of Mesopore Active Carbon Fiber for EDLC Electrode (EDLC 전극용 메조기공 활성탄소 섬유의 전기화학적 특성)

  • Kang, Chae-Yoen;Shin, Yun-Sung;Lee, Jong-Dae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.10-14
    • /
    • 2011
  • The electrode material performances of electric double layer capacitor(EDLC) were investigated using mesopous active carbon fiber(ACF), which was prepared by the iron exchange method. The mesoporous ACF had pore characteristics of specific surface area around 1249, 664 $m^2$/g, mesoporous fraction around 70.6-81.3% and meanpore size around 2.78-4.14 nm. The results showed that as HNO3 treatment time decreased, the specific surface area increased and mesoporous fraction decreased. To investigate electrochemical performance of EDLC, unit cell was manufactured using mesoporus ACF, conducting material and binder; organic elctrolyte was used on this experiment. The specific capacitance of ACF treated with HNO3 for 2 hours turned out to be 0.47 $F/cm^2$and the results of the cyclic charge-discharge tests were stable. Thus, the electrochemical performance of EDLC was mainly dependent on specific surface area of ACF electrode and the diffusion resistance of charge decreased as the mesopore increased.

A Study on Adsorbent Munufacture for Removal of VOC by Recycling of Paper Sludge and Red mud (제지슬러지와 적니를 이용한 VOC 제거를 위한 흡착제 개발 연구)

  • Min, Byong-Hun;Kim, Jeong-Ho;Chung, Chan-Kyo;Suh, Sung-Sup;Kang, Sung-Won
    • Clean Technology
    • /
    • v.8 no.2
    • /
    • pp.61-66
    • /
    • 2002
  • Recycling method of red mud, byproduct from the aluminium manufacturing process, and paper sludge was investigated in order for them to be utilized as the adsorbent for the removal of volatile organic components(VOCs). Either high density polyethylene(HDPE) or low density polyethylene(LDPE) was added to facilitate the manufacture of adsorbents. The utilization of HDPE in the adsorbents increased the adsorption capacity due to the good physical properties, such as, BET and true density, compared with LDPE. BET values of the manufactured adsorbents were much lower than the commercial activated carbon ($10^{-2}-10^{-3}$). It may be due to the fact that the time for decomposition of the paper sludge was not enough during the manufacturing of adsorbents. But the specific adsorption capacity of the manufactured adsorbents (mole adsorbed per unit surface area) had much higher value than the commercial activated carbon (10-100). Therefore, it is important that BET of manufactured adsorbents needs to be increased to obtain the same adsorption capacity as the commercial activated carbon.

  • PDF

Sensing Properties of TiO2/ZnO Double-Layer Hollow Fibers Synthesized by Atomic Layer Deposition (원차층증착법으로 제작된 TiO2/ZnO 이중층 중공 나노섬유의 가스 감응 특성)

  • Kim, Jae-Hun;Park, Yu-Jeong;Kim, Jin-Yeong;Kim, Sang-Seop
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.133-133
    • /
    • 2016
  • 화학저항식(Chemiresistive) 가스센서의 저항변화를 향상시키기 위해서는 센서 소재의 비표면적을 향상시키는 방향 및 전자천이를 증가시키는 방향으로 연구가 진행되어야 하며, 그 중 센서의 비표면적을 향상시키는 예로써 중공 나노섬유가 있을 수 있다. 본 연구에서는 비표면적의 향상뿐만 아니라 중공 나노섬유의 전자천이를 증가시켜 센서의 검출 성능을 더욱 향상시키기 위한 목적으로 $TiO_2/ZnO$ 이중층 중공 나노섬유를 제안하었다. 제안된 $TiO_2/ZnO$ 이중층 중공 나노섬유는 템플레이트 합성법을 통해 제작되었으며, 그 공정은 다음과 같다; 전기방사(Electrospinning) 공정을 통해 폴리머 나노섬유를 제작한 후 $TiO_2$ 층과 ZnO 층을 ALD(Atomic Layer Deposition) 공정을 통해 차례대로 증착시킨다. 그 후 후열처리 공정을 통해 코어 폴리머를 제거함으로써 $TiO_2/ZnO$ 이중층 중공 나노섬유를 얻을 수 있다. 이 때, ZnO 층의 두께는 각각 달리하여 제작되었으며, 최종적으로 이들에 대한 가스 센싱 특성 및 메커니즘에 대한 체계적인 조사를 진행하였다. 단층 중공나노섬유는 셀 층의 두께가 Debye length와 유사할 때 셀 층 표면이 완전공핍층이 형성되고, 그 보다 크게 되면 부분적인 공핍층이 형성되게 되어 감응도가 감소하게 된다. 그러나 이중층 중공 나노섬유의 경우 셀 층의 두께가 Debye length 보다 더 크게 되더라도 TiO2와 ZnO의 헤테로접합으로 인해 ZnO에서 TiO2로 전자의 이동을 야기시키게 되어 환원성 가스에 대한 감응도가 단층 ZnO 중공 나노섬유에 비해 향상되게 된다.

  • PDF

Effect of solvent and precursor on the CeO2 nanoparticles fabrication (CeO2 나노 분말 합성에 미치는 용매 및 전구체의 영향)

  • Ock, Ji-Young;Son, Jeong-Hun;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.118-122
    • /
    • 2018
  • Ceria ($CeO_2$) is a rare earth oxide, which has been widely investigated to improve the property. It is important to increase the surface area of $CeO_2$, because high surface area of $CeO_2$ can improve the catalytic ability. $CeO_2$ nanoparticles were synthesized by a solvothermal process. A discussion on the influence of solvent ratio and precursors on $CeO_2$ nanoparticles was performed. The size and degree of the agglomeration of the synthesized $CeO_2$ could be tuned by controlling those parameters. The average size and distribution of prepared $CeO_2$ powders was in the range of 3 to 13 nm and narrow, respectively. The XRD pattern showed that the synthesized $CeO_2$ powders were crystalline with cubic phase of $CeO_2$. The average particle size was calculated by Scherrer equation and FE-TEM images. The morphology of the synthesized $CeO_2$ particle was objected using FE-TEM and FE-SEM. Specific surface area of the synthesized $CeO_2$ was determined using BET (Brunauer-Emmett-Teller) equation.

Synthesis of Pd/TiO2 Catalyst for Aerobic Benzyl Alcohol Oxidation (호기성 벤질 알코올 산화반응을 위한 팔라듐 이산화티타늄 촉매 개발)

  • Cho, Tae Jun;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.281-285
    • /
    • 2014
  • $Pd/TiO_2$ particles were prepared by wet impregnation for aerobic benzyl alcohol oxidation. Catalysts were prepared by the impregnation of 10 wt% palladium on $TiO_2$ after calcination at various temperatures. The surface areas of the catalysts were changed with calcination temperature. The catalyst calcined at $300^{\circ}C$ possessed the highest surface areas. Catalytic activity of the prepared samples was examined for aerobic benzyl alcohol oxidation. Among the samples, $Pd/TiO_2$ calcined at $300^{\circ}C$ showed the highest catalytic activity. Moreover, the catalysts with various Pd concentrations from 5 wt% to 15 wt% were prepared to investigate an optimum catalyst. 10 wt% $Pd/TiO_2$ was the most active in this reaction due to its higher surface areas and metal dispersion.

Hydrogen Sensing Property of Porous Carbon Nanofibers by Controlling Pore Structure and Depositing Pt Catalyst (기공구조 조절 및 Pt촉매 증착을 이용한 다공성 탄소나노섬유의 수소가스 감지특성)

  • Kang, Seok Chang;Im, Ji Sun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.243-248
    • /
    • 2011
  • Pt deposited porous carbon nanofibers was prepared as a highly sensitive material of hydrogen gas sensor operating at room temperature. Nanofibers was obtained by electrospinning method using polyacrylonitrile as a carbon precursor and then thermally treated for carbon nanofibers. Chemical activation of carbon nanofibers was carried out to enlarge specific surface area up to $2093m^2/g$. Sputtered Pt layer was uniformly distributed keeping the original shape of carbon nanofibers. The hydrogen gas sensing time and sensitivity were improved based on effects of high specific surface area, micropore structure and deposited Pt catalyst.

Characteristics of Micro-pore Structure of Foam Composite using Palm-based Activated Carbon (야자계 활성탄을 활용한 폼 복합체의 미세기공 구조특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.157-164
    • /
    • 2021
  • Recently, a number of studies have been conducted on photocatalysts and adsorbents that can remove harmful substances to improve environmental problems related to fine particles. In this study, a porous foam composites were fabricated using palm-based activated carbon having a large amount of micro-pores and foam concrete with a significantly larger total pore volume compared to general construction materials. To evaluate the adsorption potential of fine particles, the pore structure of the foam composites were analyzed. For the analysis of the pore structure of the foam composite, BET and Harkins-jura theory were applied from the measured nitrogen adsorption isotherm. From the results of the analysis, the specific surface area and micro-pore volume of the foam composite containing activated carbon increased significantly compared to Plain. As thereplacement of activated carbon increased, the specific surface area and micro-pore volume of the foam composite tended to increase. It seems that the foam composite has high adsorption performance for gaseous fine particle precursor such as nitrogen oxides.