DOI QR코드

DOI QR Code

Effect of Operating Parameters on the Physical Properties of Activated Carbon Manufactured with Bead-Type Polymer Resin

구형 고분자수지로 활성탄제조 시 운전인자의 영향

  • Lee, Gangchoon (Department of Chemical Engineering, Dong-eui University) ;
  • Yoon, Taekyung (Department of Environmental Engineering, Dong-eui University) ;
  • Shon, Zangho (Department of Environmental Engineering, Dong-eui University)
  • Received : 2013.08.08
  • Accepted : 2013.09.03
  • Published : 2013.09.30

Abstract

Using a cation exchange resin of polystyrene-DVB copolymer as a carbon source for the production of activated carbon, the effects of operating parameters on the physical properties of activated carbon such as specific surface area and specific pore volume were experimentally studied. In carbonization process specific surface area and specific pore volume of carbonized product decreased with the increase of carbonization temperature and time. They were proportional to activation temperature and time up to the specific temperature and time in activation process. In carbonization process the increase of heating rate gave negative effect to the properties. The properties of activated product, on the contrary, increased with the heating rate in carbonization process. The properties of activated carbon manufactured with the resin exchanged with divalent cations were lower than those with raw resin.

탄소원으로 구형 고분자수지 중 폴리스티렌-DVB 공중합으로 제조된 양이온교환수지를 사용하여 활성탄제조 시 활성탄의 주요물성인 비표면적과 비용적에 미치는 운전인자의 영향이 실험적으로 연구되었다. 활성탄의 비표면적과 비용적은 탄화공정에서 탄화온도 및 탄화시간이 증가함에 따라 감소하였고, 활성화공정에서는 활성화온도와 활성화시간에 따라 증가하였지만 특정 온도와 시간 이상에서는 감소하였다. 탄화공정에서 승온속도가 증가함에 따라 감소하였지만, 반대로 활성화 후 승온속도에 비례하는 물성을 보였다. 2가이온으로 포화된 수지로 제조된 활성탄은 새 수지로 제조된 활성탄에 비해 낮은 비표면적을 보였다.

Keywords

References

  1. Marsh, H., and Rodriguez-Reinoso, Activated Carbon, Elsevier Ltd, Oxford, 2006, pp. 27-42, 243-249, 383-447.
  2. Malik, D. J., Trochimczuk, A. W., Jyo, A., and Tylus, W., "Synthesis and Characterization of Nanostructured Carbons with Controlled Porosity Prepared from Sulfonated Divinylbiphenyl Copolymers," Carbon, 46, 310-319 (2008). https://doi.org/10.1016/j.carbon.2007.11.041
  3. Laszlo, K., Bota, A., and Nagy, L. G., "Comparative Adsorption Study on Carbons from Polymer Precursors," Carbon, 38, 1965-1976 (2000). https://doi.org/10.1016/S0008-6223(00)00038-5
  4. Kocirik, M., Brych, J., and Hradil, J., "Carbonization of Beadshaped Polymers for Application in Adsorption and in Composite Membranes," Carbon, 39, 1919-1928 (2001). https://doi.org/10.1016/S0008-6223(00)00326-2
  5. Harland, C. E., Ion Exchange-Theory and Practice, 2nd ed., The Royal Society of Chemistry, Cambridge, 1994, pp. 49-89, 166-178.
  6. Simon, G. P., Ion Exchange Training Manual, van Nostrand Reinhold, New York, 1991, pp. 35-47.
  7. Neely, J. W., "Characterization of Polymer Carbons Derived from Porous Sulfonated Polystyrene," Carbon, 19, 27-36 (1981). https://doi.org/10.1016/0008-6223(81)90101-9
  8. Eltekova, N. A., Berek, D., Novak, I, and Belliardo, F., "Adsorption of Organic Compounds on Porous Carbon Sorbents," Carbon, 38, 373-377 (2000). https://doi.org/10.1016/S0008-6223(99)00113-X
  9. Bratek, W., Bratek, K., and Kulazynski, M., "The Utilization of Waste ion Exchange Resin in Environmental Protection," Fuel Proc. Technol., 77-78, 431-436 (2002). https://doi.org/10.1016/S0378-3820(02)00094-2
  10. Bratek, K., Bratek, W., and Kulazynski, M., "Carbon Adsorbents from Waste Ion-exchange Resin," Carbon, 40, 2213-2220 (2002). https://doi.org/10.1016/S0008-6223(02)00091-X
  11. Teng, H., and Wang, S. C., "Preparation of Porous Carbons from Phenol-formaldehyde Resins with Chemical and Physical Activation," Carbon, 38, 817-824 (2000). https://doi.org/10.1016/S0008-6223(99)00160-8
  12. http://www.ixresin.com/2-1.html
  13. Nakagawa, H., Watanabe, K., Harada, Y., and Miura, K., "Control of Micropore Formation in the Carbonized Ion Exchange Resin by Utilizing Pillar Effect," Carbon, 37, 1455-1461 (1999). https://doi.org/10.1016/S0008-6223(99)00008-1