• Title/Summary/Keyword: 비파괴 이미징

Search Result 10, Processing Time 0.025 seconds

Nondestructive Imaging of an Object Using the Compact Continuous-Wave Sub-Terahertz Imaging System (소형 CW Sub-THz 이미징 시스템을 이용한 물체의 비파괴 이미징)

  • Jang, Jin-Seok;Kwon, Il-Bub;Yoon, Dong-Jin;Seo, Dae-Cheol
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.352-358
    • /
    • 2010
  • This paper presented compact CW sub-THz imaging system using the terahertz transmitter(Tx) that generating 0.34 THz electromagnetic wave on based electronic device. Using 0.34 THz electromagnetic wave generated by Tx, we transmitted to sample by point by point scan method and measured transmitting terahertz wave magnitude and phase information respectively with terahertz receiver(Rx) based on sub harmonic mixer. This paper measured and compared images of several samples to obtain better imaging results by changing time delay and step distance of scanning stage which affect image resolution. Also, through the imaging measurement of various samples, we were able to assure possibility of application of terahertz wave.

Trend in Industrial Terahertz Technologies (산업용 테라헤르츠 기술동향)

  • Moon, K.;Lee, E.S.;Lee, I.M.;Park, D.W.;Kim, H.S.;Park, J.W.;Han, S.P.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.3
    • /
    • pp.56-67
    • /
    • 2017
  • 오랫동안 미개척 주파수 대역이었던 테라헤르츠 대역은 소자 및 시스템 기술 연구성과의 축적과 기술 성숙 과정을 거쳐, 최근 다수의 상용화 시스템이 출시되는 등 산업 분야에의 응용이 확산되었다. 특히, 투과 이미징이 가능한 테라헤르츠 이미징 시스템은 산업 분야에서 비접촉 비파괴 품질검사 분야 등에 많은 응용이 기대되고 있다. 이밖에 분광 기술에 기반을 둔 막 두께 측정 시스템, 초고속 통신 시스템 등도 향후 중요한 테라헤르츠 기술 응용 분야로 여겨지고 있다. 본고에서는 테라헤르츠 응용 기술에 관한 최근의 연구 동향을 간략히 살펴보고, 한국전자통신연구원 전파위성연구본부 테라헤르츠 창의원천연구실에서 주력해 온 포토닉스 기반 테라헤르츠 소자 및 시스템에 관해 상세히 소개한다.

Terahertz Imaging Technology and Applications (테라헤르츠 이미징 기술 및 그 응용 분야)

  • Kim, M.G.;Lee, E.S.;Park, D.W.;Choi, D.H.;Lee, I.M.;Shin, J.H.;Kim, Y.H.;Kim, J.S.;Cho, J.C.;Kim, Y.H.;Kwak, D.Y.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.97-105
    • /
    • 2021
  • The terahertz wave (THz wave) is a band between infrared and microwaves and is defined as an electromagnetic wave having a frequency of 0.1 to 10 THz band. THz waves have the property of transmitting nonpolar materials, which the visible light cannot be transmitted, such as ceramics, plastics, and paper; and the photon energy is low, such as several meV. For this reason, non-destructive testing equipment based on THz imaging technology can be applied to the industrial field. Recently, THz imaging technology was applied in wide industrial fields, such as automobiles, batteries, food, medical, and security, and being actively studied. In this paper, we describe the research trends of terahertz imaging technology and experimental results. Furthermore, we summarize the recent commercialized terahertz camera. Finally, we present the research results in the field of the human security scanner system.

Endoscopic Bio-Imaging Using Optical Coherence Tomography (마이크로 내시경 및 첨단 광 단층촬영기법을 이용한 생체 이미징)

  • Ahn, Yeh-Chan;Brenner, Matthew;Chen, Zhongping
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.466-471
    • /
    • 2011
  • Optical coherence tomography(OCT) is an emerging medical diagnostic tool that draws great attention in medical and biological fields. It has a 10-100 times higher spatial resolution than that of the clinical ultrasound but lower imaging depth such as 1-2 mm. In order to image internal organs, OCT needs an endoscopic probe. In this paper, the principle of Fourier-domain optical coherence tomography with high-speed imaging capability was introduced. An OCT endoscope based on MEMS technology was developed. It was attached to the Fourier-domain OCT system to acquire three-dimensional tomographic images of gastrointestinal tract of New Zealand white rabbit. The endoscope had a two-axis scanning mirror that was driven by electrostatic force. The mirror stirred an incident light to sweep two-dimensional plane by scanning. The outer diameter of the endoscope was 6 mm and the mirror diameter was 1.2 mm. A three-dimensional image rendered by 200 two-dimensional tomographs with $200{\times}500$ pixels was displayed within 3.5 seconds. The spatial resolution of the OCT system was 8 ${\mu}m$ in air.

Nondestructive Evaluation of Nanostructured Thin Film System Using Scanning Acoustic Microscopy (초음파현미경을 이용한 나노 구조 박막 시스템의 비파괴평가)

  • Miyasaka, Chiaki;Park, Ik-Keun;Park, Tae-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.437-443
    • /
    • 2010
  • In recent years, as nano scale structured thin film technology has emerged in various fields such as the materials, biomedical and acoustic sciences, the quantitative nondestructive adhesion evaluation of thin film interfaces using ultra high frequency scanning acoustic microscopy(SAM) has become an important issue in terms of the longevity and durability of thin film devices. In this study, an effective technique for investigating the interfaces of nano scale structured thin film systems is described, based on the focusing of ultrasonic waves, the generation of leaky surface acoustic waves(LSAWs), V(z) curve simulation and ultra high frequency acoustical imaging_ Computer simulations of the V(z) curve were performed to estimate the sensitivity of detection of micro flaws(i.e., delamination) in a thin film system. Finally, experiments were conducted to confirm that a SAM system operating at a frequency of 1 GHz can be useful to visualize the micro flaws in nano structured thin film systems.

Study of Noncontact Condition Diagnosis on Painting with Terahertz Waves (테라헤르츠파를 이용한 회화문화재 상태진단 적용연구)

  • Baek, Na Yeon;Kang, Dai Ill;Ha, Tae Woo;Sim, Kyung Ik;Lee, Ho Won;Kim, Jae Hoon;Lee, Han Hyoung
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.235-247
    • /
    • 2016
  • Conventional imaging techniques such as ultraviolet, infrared, and X-ray are used mainly to diagnose the damaged parts of the painted cultural assets in Korea. These techniques, however, have limits in diagnosing damages of interlayer parts. We have performed and extensive study on the applicability of Terahertz(THz) analysis technique, introduced recently to this field of study on cultural properties in Korea, to diagnose painted cultural assets. The specimens, produced to imitate the damage types of Korean painted properties, were analyzed over their painting, supporting, and backing layers by terahertz pulse imaging technique. The analyzed results provided information about the cracks, the separated areas, and the separated distances between layers on the specimens. Our research, then, was extended to real painted cultural remains, Birojana Sam-shin Gwebul-do at Bongseon Temple in Namyang-ju, Korea National Treasure Number 1792, through which we have obtained 3D information about the extent and pattern of damages to the asset. These results demonstrate that terahertz 3D imaging technique has the capability of noncontact 3D diagnosis on painted cultural properties.

Imaging with terahertz electromagnetic pulses (테라헤르츠 전자기파 펄스의 변조를 이용한 이미징의 해상도 연구)

  • Oh, Seung-Jae;Kang, Chul;Son, Ju-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.1
    • /
    • pp.46-50
    • /
    • 2004
  • Images were acquired by the modulation of terahertz electromagnetic signals and compared by modulation frequencies. For the real-time acquisition of images a fast scanning method has been adopted utilizing a galvanometer. The acquired time domain waveforms were transformed into frequency domain data by fast Fourier transformations (FFT). We chose some frequency components to compare the resolution of images. The beam profiles at the focal position were measured by a knife-edge technique. Beam diameter was shown to decrease as the frequency increased. By scanning one- and two-dimensional samples a significant image enhancement was observed with the frequency increment. A nondesouctive imaging system using ㎔ electromagnetic pulses was also demonstrated.

Current Status of X-ray CT Based Non Destructive Characterization of Bentonite as an Engineered Barrier Material (공학적방벽재로서 벤토나이트 거동의 X선 단층촬영 기반 비파괴 특성화 현황)

  • Diaz, Melvin B.;Kim, Joo Yeon;Kim, Kwang Yeom;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.400-414
    • /
    • 2021
  • Under high-level radioactive waste repository conditions, bentonite as an engineered barrier material undergoes thermal, hydrological, mechanical, and chemical processes. We report the applications of X-ray Computed Tomography (CT) imaging technique on the characterization and analysis of bentonite over the past decade to provide a reference of the utilization of this technique and the recent research trends. This overview of the X-ray CT technique applications includes the characterization of the bentonite either in pellets or powder form. X-ray imaging has provided a means to extract grain information at the microscale and identify crack networks responsible for the pellets' heterogeneity. Regarding samples of pellets-powder mixtures under hydration, X-ray CT allowed the identification and monitoring of heterogeneous zones throughout the test. Some results showed how zones with pellets only swell faster compared to others composed of pellets and powder. Moreover, the behavior of fissures between grains and bentonite matrix was observed to change under drying and hydrating conditions, tending to close during the former and open during the latter. The development of specializing software has allowed obtaining strain fields from a sequence of images. In more recent works, X-ray CT technique has served to estimate the dry density, water content, and particle displacement at different testing times. Also, when temperature was added to the hydration process of a sample, CT technology offered a way to observe localized and global density changes over time.

Quantification of the Distribution of the Internal Lesions of Sweet Potatoes Over Storage Periods (저장 기간에 따른 고구마 내부 병변의 분포 정량화)

  • Ji-Woo Jung;Dong-Il Lee;Seong-Young Choi;Roshanzadeh Amir;Eung-Sam Kim
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.12a
    • /
    • pp.66-66
    • /
    • 2020
  • 쌈채소나 산나물로 알려진 곤달비(Ligularia stenocephala)의 종자나 종묘는 시장 거래가격이 높게 형성되어 재배농가의 경영비 증가로 이어지고 있다. 또한, 곤달비의 종자는 대개 농가 자가 채종으로 생산되며, 채종재배에 대한 체계가 정립되어 있지 않다. 이에 본시험은 곤달비의 우량종자 생산을 위한 종자결실률 향상 재배조건과 채종적기를 구명하고자 하였다. 전북 남원시 허브산채시험장에서 2018년 10월에 2년생 곤달비 종묘를 포장에 정식하여 시험을 실시하였다. 적정 채종 재배조건을 구명하기 위해 2019년 노지, 하우스, 55% 차광막을 설치한 노지포장에서 곤달비의 개화시기, 개화율, 생육특성, 결실률 등을 조사하였다. 더불어 채종적기를 설정하기 위해서 곤달비 개화 후 50일~100일 동안 7일 간격으로 채종하여 결실률, 채종량, 종자 발아율을 조사하였다. 곤달비의 개화는 하우스재배, 노지재배의 경우 7월 하순, 차광재배는 8월 초순 개화가 시작되었으며, 개화 최성기도 하우스재배와 노지재배가 차광재배와 비교해 15일 정도 일렀다. 하지만 개화 종료 시기는 노지재배가 가장 빨랐으며 하우스재배가 가장 늦었다. 개화율은 하우스재배, 차광재배, 노지재배 순으로 높았다. 개화기 생육특성는 차광재배일 때 초장과 화경장이 가장 컸으며, 화서수와 자방수는 하우스재배가 타 재배방법에 비해 다소 많았다. 곤달비 재배방법에 따른 결실률은 차광재배가 70.1%, 노지재배가 21.9%, 하우스재배가 15.8%이었으며, 채종량은 차광재배의 경우 10a당 39.6kg, 노지재배 4.9kg, 하우스재배 4.6kg이었다. 백립중과 종자길이, 종자너비 또한 차광재배가 타 재배방법에 비해 양호하였다. 채종시기에 따른 결실률은 채종시기가 늦어질수록 높은 값을 가졌으나, 화경당 채종량은 개화 후 70일에 85일 사이에 가장 많았다. 발아율은 노지재배의 경우 개화 후 70일 이후부터 90% 이상으로 높은 발아율을 보였고, 차광재배는 개화 후 65일부터 95% 이상의 발아율을 나타냈으나 하우스재배의 경우에는 개화 후 80일 이후부터 85% 이상으로 발아율이 양호하였다. 따라서 곤달비의 우량종자를 생산하기 위해서는 55% 차광막을 설치한 노지에서 재배하여 개화 후 65일 이후부터 종자가 비산하기 전까지 채종해야 할 것으로 여겨진다.

  • PDF