• Title/Summary/Keyword: 비틀림모멘트

Search Result 95, Processing Time 0.025 seconds

Modified Moment Gradient Correction Factor of Nonprismatic Beams (변단면보의 개선된 모멘트 구배 수정계수)

  • Park, Jong Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • New design equations for calculating the lateral-torsional buck ling moment resistances of stepped I-section beams with/without continuous lateral top-flange bracing subjected to a point load, a series of point loads, and a uniformly distributed load, are suggested based on the results of elastic finite-element analyses. The new equations presented in this study are compared with the current moment gradient modifiers presented by other researchers and specifications. Although the study paper presents mainly stepped-beam cases subjected to a point load and a uniformly distributed load. The proposed equations include the length-to-height ratio effects for stepped beams with continuous lateral top-flange bracing. The new moment gradient correction factors could be easily used to calculate the lateral-torsional buckling moment resistance of stepped I-beams.

A Study on Inelastic Lateral-Torsional Buckling of Stepped I-Beams Subjected to Pure Bending (균일모멘트를 받는 계단식 I형보의 비탄성 횡-비틀림 좌굴에 관한 연구)

  • Kim, Jong Min;Kim, Seung Jun;Park, Jong Sup;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • The cross-sections of continuous multi-span beams sometimes suddenly increase, or become stepped, at the interior supports of continuous beams to resist high negative moments. The three-dimensional finite-element program ABAQUS (2006) was used to analytically investigate the inelastic lateral-torsional buckling behavior of stepped beams subjected to pure bending moment and resulted in the development of design equations. The flanges of the smaller cross-section were fixed at 30.48 by 2.54 cm, whereas the width and/or thickness of the flanges of the larger cross-section varied. The web thickness and height of beam was kept at 1.65 cm and 88.9 cm, respectively. The ratios of the flange thickness, flange width, and stepped length of beams are considered analytical parameters. Two groups of 27 cases and 35 cases, respectively, were analyzed for double and single stepped beams. The combined effects of residual stresses and geometrical imperfection on inelastic lateral-torsional buckling of beams are considered. First, the distributions of residual stress of the cross-section is same as shown in Pi, etc (1995), and the initial geometric imperfection of the beam is set by central displacement equal to 0.1% of the unbraced length of beam. The new proposed equations definitely improve current design methods for the inelastic LTB problem and increase efficiency in building and bridge design. The proposed solutions can be easily used to develop new design equation for inelastic LTB resistance of stepped beams subjected to general loading condition such as a concentrated load, a series of concentrated loads or uniformly distributed load.

Effects of Wing Twist on Longitudinal Stability of BWB UCAV (날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구)

  • Ban, Seokhyun;Lee, Jihyeong;Kim, Sangwook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.

A Numerical Study on Nonprismatic Flexural Member for Evaluating Structural Capacity (구조물 사용성 증진을 위한 변단면 휨부재에 대한 해석적 연구)

  • Son, Ji-Min;Kim, Jae-Heung;Park, Jong-Sup;Gwak, Sung-Min
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.11a
    • /
    • pp.101-104
    • /
    • 2008
  • 일반적으로 연속경간을 가지는 강합성 I-형강 교량에 있어서 내부 지점 부근에서 상대적으로 큰 부모멘트가 발생하므로, 이에 경제적인 단면 활용을 위하여 변단면을 적용하여 휨강도를 증가시킨다. 본 연구에서는 기존 강도계산식에 관한 연구를 토대로 하여 비탄성 구간에 있는 변단면 I형보의 횡-비틀림 좌굴강도를 유한요소해석프로그램 ABAQUS(2007)를 이용하여 산정하고, 간편한 설계식을 제안하고 있다. 지간 한쪽 끝에 계단식 단면변화를 가지는 보에 대해서 고려하였으며, 플랜지 길이방향 비, 너비방향 비, 두께의 비로 계단식 I형보를 나타내었다. 해석에 사용된 단면매개변수는 36가지 조합이며, 비탄성 횡-비틀림 거동을 고려하기위하여 잔류응력 및 초기결함을 고려한 비선형해석을 실시하였는데, Pi(1995)등이 고려한 잔류응력의 형상과 국내 I형강 표준 치수 허용치에 근거하여 부재 길이의 0.1%를 초기제작오차로 고려하였다. 해석모델의 양쪽 끝단에는 모멘트하중을 재하하였다. 개발 제한된 식은 선형 모멘트 하중이 작용할 때 적용가능한 식으로 경제적이고 합리적인 설계에 적극 활용될 수 있을 것이다.

  • PDF

Ultimate Strength Interaction of Steel/Concrete Composite Trapezoidal Box Girders Subjected to Concurrent Action of Bending and Torsion (휨과 비틀림을 동시에 받는 강/콘크리트 합성 제형 박스거더의 극한강도 상호작용)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.465-475
    • /
    • 2010
  • In the horizontally curved bridges, girders are subjected to the combined action of vertical bending and torsion due to their curvatures without any eccentric loads. As subjected to bending and torsion, the ultimate strength of steel/concrete composite box girders are limited by the diagonal tensile stress in the deck concrete induced by the St. Venant torsion. To determine the ultimate strength of composite box girders in bending and torsion and their interactions, this study conducted a 3-dimensional FEA and classical strength of materials investigation. Using ABAQUS, the FEA fully utilized advanced nonlinear analysis techniques simulating material/geometrical nonlinearity and post-cracking behaviors. The ultimate strength from numerical data were compared with theoretically derived values. Concurrent compressive stresses in the concrete deck improve the shear-resisting capacity of concrete, thereby resulting in an increased torsional resistance of the composite box girder in positive bending. The proposed interaction equation is very simple yet it provides a rational lower bound in determining the ultimate strength of concrete/steel composite box girders.

Torsional Behavior of Core Structures according to the Location of Reinforcement (보강재의 위치변화에 따른 코아구조물의 비틀림거동)

  • 정동조
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.545-555
    • /
    • 2002
  • This paper presents a matrix analysis to get the torsional behavior of core structures with torsional reinforcements. Based on simplified assumptions, formulae for the forces and displacements of cote structures subjected to three typical load cases, i.e. uniformly distributed torque, triangularly distributed torque and a concentrated torque at the top of the structure, are derived analytically. The behavior of the cote according to the variation of reinforcement locations is investigated to estimate the optimum locations of reinforcements to minimize the core rotations and bimoments. The results by the program MIDAS-GEN have shown that this analysis can give quite satisfactory results for structural models with torsional reinforcements. Although three dimensional analysis by computer has come within reach as a normal structural design procedure, its use as an optimization tool may not be desirable in view of the expense and time required. Formulae that we presented here can be used to estimate the torsional rotations and forces of practical cote structures at the preliminary design stages.

Evaluation of Lateral-Torsional Buckling Strength of I-Girder with Corrugated Web under Uniform Bending (균일한 휨모멘트가 작용하는 파형강판 복부판 I-거더의 횡-비틂 좌굴강도 평가)

  • Moon, Ji Ho;Yi, Jong Won;Choi, Byung Ho;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2007
  • This paper presents theoretical and finite element analysis results for the lateral-torsional buckling of I-girders with corrugated web under uniform bending. Lateral-torsional buckling is a major design aspect for flexural members composed of thin-walled I-section. However, torsional rigidities such as the warping constants of the I-girders with corrugated web are not fully understood yet. In this paper, bending and pure torsional rigidities of I-girders with corrugated web are first described using the results of previous researchers. Then, the location of the shear center and the warping constants are derived. Using the derived section properties of I-girders with corrugated web, the lateral-torsional buckling strength is determined. Finite element analyses are conducted and the proposed lateral-torsional buckling strength of I-girders with corrugated web is successfully verified. Finally, the effects of corrugation profiles of the web on the lateral-torsional buckling load of I-girders with corrugated web are discussed.

Stress Analysis of Crank Shaft by Considering Bending and Twisting Moment (굽힘 및 비틀림모멘트를 고려한 크랭크축의 응력해석)

  • 이정윤;정주석
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.3
    • /
    • pp.13-18
    • /
    • 1993
  • This paper an application method of crankshaft of four cylinder internal combustion engine for studying stress analysis of the shaft. For simple analysis, uniform sections of journal, pin and arm parts were assumed. Transfer Metrix Method was used, considering branched part and coordinate transformation part. Bending, twisting moment and stresses of crank shaft were investigated.

  • PDF