• Title/Summary/Keyword: 비탄성 지진응답

Search Result 117, Processing Time 0.022 seconds

INELASTIC RESPONSE SPECTRA CONSIDERING THE NONLINEARITY OF THE SOFT SOIL DUE TO THE WEAK SEISMIC EXCITATIONS (약진에 의한 연약지반의 비선형성을 고려한 비탄성 응답스펙트럼)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.249-258
    • /
    • 2003
  • 강진을 고려한 지진설계 규준은 약진지역에서는 불필요한 경제적 손실을 가져올 수 있고, 지반-구조물 상호작용을 고려한 성능기준 설계가 합리적인 지진설계를 위해서 중요하다는 것이 인식되었다. 이 연구에서는 연약지반 위에 놓인 단자유도계의 탄성, 비탄성 지진응답 해석을 지반의 비선형성을 고려하여 최대지진가속도를 0.07g와 0.11g로 조정한 11개 중, 약진에 대해 수행하였다. 지진 응답해석은 지반-구조물체계에 대해 유사 3차원 동적해석 프로그램으로 암반에 지진기록을 입력하여 한 단계에 일괄적으로 수행하였다. 연구 결과에 의하면 고정지반이나 선형지반을 가정한 지진응답 스펙트럼은 구조물-지반체계의 실제적인 거동을 보여주지 못하는 것으로 나타났으며, 합리적인 지진설계를 위해서는 지진규준에 정해진 일상적인 설계절차에 따라서 수행하는 것보다 다른 성질을 가진 여러 지반에 대해서 성능기준 지진설계를 수행하는 것이 필요하다. 약진을 받는 연약지반의 비선형성도 입력지진동을 증폭시켜 탄성, 비탄성 지진응답 스펙트럼에 심하게 영향을 미쳤으며, 그 현상은 특히 탄성 응답스펙트럼에서 두드러졌다.

  • PDF

Seismic Performance Evaluation of Building Structures Based on the Adaptive Lateral Load Distribution (적응적 횡하중 분배방법을 이용한 건축구조물의 내진성능평가)

  • 이동근;최원호;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.39-58
    • /
    • 2004
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. Evaluation method of seismic performance based on the pushover analysis reflected in PBSE was developed by some researchers. For the evaluation of inelastic global and local seismic responses by pushover analysis exactly. lateral load distribution should be adjusted and reflected the dynamic characteristics of structural system and various seismic ground motions. And performance point should be determined based on the evaluation of reasonable deformation capacity of a building more exactly. An effective method based on the improved the adaptive lateral load distribution and the equivalent responses of a multistory building is proposed in this study to efficiently estimate the accurate inelastic seismic responses. The proposed method can be used to evaluate the seismic performance for the global inelastic behavior of a building and to accurately estimate its local inelastic seismic responses. In order to demonstrate the accuracy and validity of this method, inelastic seismic responses estimated by the proposed method are compared with those obtained from other analytical methods.

Revaluation of Inelastic Structural Response Factor for Seismic Fragility Evaluation of Equipment (기기의 지진취약도 평가를 위한 구조물 비탄성구조응답계수의 재평가)

  • Park, Junhee;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • There are a lot of equipment related to safety and electric power production in nuclear power plants. The structure and equipment in NPPs were generally designed considering a high safety factor to remain in the elastic zone under earthquake load. However it is needed to revaluate the seismic capacity of the structure and equipment as the magnitude of earthquake was recently increased. In this study the floor response due to the nonlinear behaviors of structure was analyzed and the inelastic structural response factor was calculated by the nonlinear time history analysis. The inelastic structural response factor was calculated by the EPRI method and the nonlinear analysis method to realistically evaluate the seismic fragility for the equipment. According to the analysis result, it was represented that the inelastic structural response factor was affected by the natural frequency of equipment, the location of equipment and the dynamic property of structure.

Inelastic Response Characteristic Analysis of Frame Structures Subjected to Near Fault Ground Motion (근거리지진을 받는 골조 구조물의 비탄성응답 특성 분석)

  • Han, Sung Ho;Shin, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.273-284
    • /
    • 2006
  • In this study, After considering the general characteristic of Near Fault Ground Motion, the inelastic response spectrum is made to evaluate using the change of ductility and yield stiffness coefficient according to the inelastic behavior of structures which couldn't be examined through the elastic response spectrum. It is conducted to the elastic and inelastic time history analysis about the long period structure which could reflect the characteristic of Near Fault Ground Motion with the best and it is also examined the aspect of response distribution about the input data. Moreover, the response characteristic of structure is analyzed by investigating the plastic hinge for the purpose of grasp about the inelastic behavior of structure.

Inelastic Response Spectra Due to the Weak Earthquakes Considering the Nonlinear Soft Soil Layer (비선형 연약지반을 고려한 약진에 의한 비탄성 응답스펙트럼)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.15-22
    • /
    • 2003
  • Seismic design codes developed taking into account the strong earthquakes may result in unnecessary economical loss in the low seismic area, and the importance of the performance based design considering the soil-structure interaction is recognized for the reasonable seismic design. In this study. elastic and inelastic seismic response analyses of a single degree of freedom system on the soft soil layer were performed considering the nonlinearity of the soil for the 1 weak earthquakes scaled to the nominal peak accelerations of 0.07g and 0.11g. The seismic response analyses were performed in one step applying the earthquake motions to the bedrock, utilizing a pseudo 3-D dynamic analysis software of the soil-structure system. The study results indicated that seismic response spectra of a system assuming the rigid base or the linear soil layer does not represent the true behavior of a structure-soil system, and it is necessary to take into account the nonlinear soil-structure interaction effects and to perform the performance based seismic design for the various soil layers, having different characteristics, rather than to follow the routine design procedures specified in the design codes for the reasonable seismic design. The nonlinearity of the soft soil excited with the weak seismic motions also affected significantly on the elastic and inelastic seismic response spectra of a system due to the nonlinear soil amplification of the earthquake motions, and it was pronounced especially for the elastic response spectra.

ATC-55 Based Friction Damper Design Procedure for Controlling Inelastic Seismic Responses (비탄성 지진응답 제어를 위한 ATC-55에 기반한 마찰감쇠기 설계절차)

  • Kim, Hyoung-Seop;Min, Kyung-Won;Lee, Sang-Hyun;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.9-16
    • /
    • 2005
  • The purpose of this paper is to present a design procedure of a friction damper for controlling elastic and inelastic responses of building structures under earthquake excitation. The equivalent damping and period increased by the friction damper are estimated using ATC-40 and ATC-55 procedures which provide equivalent linear system for bilinear one, and then a design formula to achieve target performance response level by the friction damper is presented. It is identified that there exists error between the responses obtained by this formula and by performing nonlinear analysis and the features of the error vary according to the hardening ratio, yield strength ratio, and structural period. Equations for compensating the error are proposed based on the least square method, and the results from numerical analysis indicate that the error is significantly reduced. The proposed formula can be used without much error for designing a friction damper for retrofitting a structure showing elastic or inelastic behavior.

건축물의 내진설계를 위한 구조동력학-제 1부:단자유도 구조물의 지진해석과 응답스펙트럼

  • Lee, Dong-Geun
    • 건축구조
    • /
    • v.13 no.1
    • /
    • pp.46-58
    • /
    • 2006
  • 구조동력학 이론에 기초하여 내진설계 기술이 개발되었다. 그러므로 건축물의 내진설계를 근본적으로 이해하기 위해서는 구조동력학의 여러 가지 이론들을 먼저 알고 이들이 내진설계에 어떻게 적용이 되는지를 알아야 한다. 이 글은 구조기술자 여러분이 건축물의 내진설계를 이해하는데 도움이 될 수 있도록 하기 위하여 다음과 같이 3부로연재될예정이다. 제1부: 응답스펙트럼과구조물의동적해석 제2부: 등가정적해석법과반응수정계수의배경 제3부: 능력스펙트럼법에의한비탄성해석 제1부에서는 단자유도 구조물의 지진해석을 통하여 응답스펙트럼을 작성하는 원리와 이를 이용하여 간편하게 지진해석을 수행하는 방법을 소개하고 응답스펙트럼에 근거하여 설계응답스펙트럼을 작성하는 방법과 다자유도 구조물의 지진응답을 알아내기 위한 응답 스펙트럼 해석법에 관하여 소개한다. 제2부에서는 구조동력학 이론에 근거하여 등가정적해석법이 유도된 근거와 반응수정계수를 사용하게 되는 배경을 소개하여 구조기술자들이내진설계에좀더확실한이해를할수있도록할것이다. 마지막으로 제3부에서는 비탄성해석을 좀 더 쉽게 하기 위하여 사용되는 능력스펙트럼법의 배경과 이를 이용하여 건축물의 성능점을 찾는 방법과 구조물의 비탄성 지진응답을 평가하는 방법에 대하여 소개함으로써 성능에 기초한 내진설계를 위한 기초 이론을 확실히 이해할수있도록할것이다. 구조동력학에 관한 내용을 여기에 상세히 소개하자면 엄청난 분량이 될 것이므로 여기서는 이 글을 읽는 구조기술자들이 구조동력학에 관한 기초적인 내용을 이해하고 있는 것으로 가정하기로 한다. 그러므로 구조동력학에 대한 기초적 이론을 확실히 이해하고 있지 못한분들은이글을읽기전에먼저구조동력학에관한알기쉬운서적을 먼저 읽도록 추천한다.

  • PDF

Effect of the Nonlinearity of the Soft Soil on the Elastic and Inelastic Seismic Response Spectra (연약지반의 비선형성이 탄성 및 비탄성 지진응답스펙트럼에 미치는 영향)

  • Kim, Yong-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.11-18
    • /
    • 2005
  • Inelastic seismic analysis is necessary for the seismic design due to the nonlinear behavior of a structure-soil system, and the importance of the performance based design considering the soil-structure interaction is recognized for the reasonable seismic design. In this study, elastic and inelastic seismic response analyses of a single degree of freedom system on the soft soil layer were peformed considering the nonlinearity of the soil for the 11 weak or moderate, and 5 strong earthquakes scaled to the nominal peak acceleration of 0.075g, 0.15g, 0.2g and 0.3g. Seismic response analyses for the structure-soil system were peformed in one step applying the earthquake motions to the bedrock In the frequency domain, using a pseudo 3-D dynamic analysis software. Study results indicate that it is necessary to consider the nonlinear soil-structure interaction effects and to perform the performance based seismic design for the various soil layers rather than to follow the routine procedures specified in the seismic design codes. Nonlinearity of the soft soil excited with the weak earthquakes also affected significantly to the elastic and inelastic responses due to the nonlinear soil amplification of the earthquake motions, and it was pronounced especially for the elastic ones.

Effect of Smooth Hysteretic Behavior for Inelastic Response Spectra (비탄성 응답스펙트럼에 대한 완만한 곡선형 이력거동의 영향)

  • Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • The actual hysteretic behavior of structural elements and systems is closer to smooth hysteretic behavior than piece-wise linear behavior. This paper presents a methodology for computing the constant-ductility inelastic response spectra for smooth hysteretic behaviors. The effect of the hysteretic smoothness on the inelastic response spectra for acceleration, displacement, and input energy is evaluated. The results indicate that increasing smoothness in the hysteretic behavior decreases the inelastic response spectra.

Arching Action Effect for Inelastic Seismic Responses of Bridge Structures (교량의 비탄성 지진응답에 대한 아칭작용의 영향)

  • Song, Jong-Keol;Nam, Wang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.131-143
    • /
    • 2009
  • Under transverse earthquake shaking, arching action of bridge structures develops along the deck between the abutments thus providing the so-called deck resistance. The magnitude of the arching action for bridge structures is dependent on the number of spans, connection condition between deck and abutment or piers, and stiffness ratio between superstructure and substructure. In order to investigate the arching action effects for inelastic seismic responses of PSC Box bridges, seismic responses evaluated by pushover analysis, capacity spectrum analysis and nonlinear time-history analysis are compared for 18 example bridge structures with two types of span numbers (short bridge, SB and long bridge, LB), three types of pier height arrangement (regular, semi-regular and irregular) and three types of connection condition between superstructure and substructure (Type A, B, C). The arching action effects (reducing inelastic displacement and increasing resistance capacity) for short bridge (SB) is more significant than those for long bridge (LB). Semi-regular and irregular bridge structures have more significant arching action than regular bridges.