• Title/Summary/Keyword: 비탄성설계

Search Result 172, Processing Time 0.022 seconds

Evaluation of Proper Supplemental Damping for a Multi-Story Steel Frame Using Capacity Spectrum Method (능력스펙트럼법을 이용한 다증 철골조 건물의 적정 감쇠기 선정)

  • 김진구;최현훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.103-111
    • /
    • 2001
  • 본 연구에서는 능력스펙트럼법을 이용하여 성능목표를 만족하기 위하여 필요한 점성 감쇠기? 양을 간단하고 직접적인 방법으로 산정하는 방법에 관하여 연구하였다. 먼저 능력스펙트럼법을 이용하여 구조물의 비탄성 응답을 구하고 구조물의응답과 목표변위의 차이를 이용하여 필요한 유효감쇠비를 구하였다. 그리고 이러한 유효감쇠비를 이용하여 필요한 점성감쇠기의 양을 선정하였다. 본 연구에서 제안한 방법의 타당성을 검증하기 위해 10층의 철골조 건물에 세 가지 유형의 층지진하중을 가하고 제안된 절차에 따라 필요한 감쇠기의 양을 구하였다. 해석결과에 따르면 제안된 방법에 의하여 설계된 점성 감쇠기를 해석 모델에 설치하고 시간이력 해석을 수행한 결과 최대응답은 목표변위와 잘 일치함을 발견하였다.

  • PDF

Response of Bridge Piers Retrofitted by Stainless Steel Wire under Simulated Seismic Loading (내진 모사하중에 의한 스테인레스강 와이어 보강 교각의 응답)

  • Choi, Jun Hyeok;Kim, Sung Hoon;Lee, Do Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.343-350
    • /
    • 2009
  • In the present study, a new seismic retrofitting method that employs both a stainless steel wire mesh and a permeable polymer concrete mortar was proposed for reinforced concrete bridge piers with nonseismic design details. For this purpose, a total of six nonseismically designed bridge piers were tested under lateral load reversals. The test results reveal that nonseismically designed piers with lap splices need to be retrofitted to resist earthquake induced forces. In addition, it was proven that the proposed retrofitting method can be useful in improving the strength, stiffness, and energy dissipation capacities of bridge piers designed nonseismically. It is thus expected that the proposed method may provide an improved ductility capacity without sudden softening of strength for bridge piers excursing inelastic displacement range.

Seismic Behavior of Non-Seismic Concentrically Braced Frames with Shared Shear tab (쉬어탭 공유 접합부를 갖는 비내진중심가새골조의 내진거동)

  • Yeom, Hee Jin;Jung, Eun Bi;Yoo, Jung Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.323-332
    • /
    • 2015
  • Special concentrically braced frames(SCBFs) have distinctive advantages in considerable seismic performance, which make engineers widely use SCBFs as lateral-load resisting systems in buildings and have researchers to develop SCBFs design methods. Compared to the extensive research of SCBF, comparatively little information is currently available on the performance of SCBFs designed and constructed before the early 1990's. Prior to 1988, concentrically braced frames(CBFs) design requirements were substantially less restrictive. As a result, many existing structures designed to these requirements may not ensure ductility and pose a significant concern in current buildings. In this study, these older frames are referred as non-seismic braced frames(NCBFs). In order to investigate the seismic behavior of NCBFs, finite-element(FE) models of SCBF and NCBF were suggested and verified using case investigation of NCBF conducted on the University of Washington. Using these models, the seismic behavior of NCBF with shared welding shear tab, which is the representative of the types of connections, was established and compared with the seismic performance of SCBF.

Seismic Fragility Analysis by Key Components of a Two-pylon Concrete Cable-stayed Bridge (2주탑 콘크리트 사장교의 주요 부재 지진 취약도 분석)

  • Shin, Yeon-Woo;Hong, Ki-Nam;Kwon, Yong-Min;Yeon, Yeong-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.26-37
    • /
    • 2020
  • This study intends to present a fragility analysis method suitable for concrete cable-stayed bridges by performing an analysis reflecting design criteria and material characteristics from the results of inelastic time-history analysis. In order to obtain the fragility curve of the cable-stayed bridge, the limit state of the main component of the cable-stayed bridge is determined, and the damage state is classified by comparing it with the response value based on inelastic time history analysis. The seismic fragility curve of the cable-stayed bridge was made by obtaining the probability of damage to PGA that the dynamic response of the vulnerable parts to input ground motion would exceed the limit state of each structural member. According to the pylon's fragility curve, the probability of moderate damage at 0.5g is 32% for the longitudinal direction, while 7% for the transversal direction, indicating that the probability of damage in the longitudinal direction is higher in the same PGA than in the transversal direction. The seismic fragility curve of the connections showed a very high probability of damage, meaning that damage to the connections caused by earthquakes is very sensitive compared to damage to the pylon and cables. The cable's seismic fragility curve also showed that the probability of complete damage state after moderate damage state gradually decreased, resulting in less than 30% probability of complete damage at 2.0g.

Seismic Fragility Analysis for Probabilistic Performance Evaluation of PSC Box Girder Bridges (확률론적 내진성능평가를 위한 PSC Box 거더교의 지진취약도 해석)

  • Song, Jong-Keol;Jin, He-Shou;Lee, Tae-Hyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.119-130
    • /
    • 2009
  • Seismic fragility curves of a structure represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity such as peak ground acceleration (PGA), spectral acceleration ($S_a$) and spectral displacement ($S_d$). So those are very essential to evaluate the structural seismic performance and seismic risk. The purpose of this paper is to develop seismic fragility curves for PSC box girder bridges. In order to construct numerical fragility curve of bridge structure using nonlinear time history analysis, a set of ground motions corresponding to design spectrum are artificially generated. Assuming a lognormal distribution, the fragility curve is estimated by using the methodology proposed by Shinozuka et al. PGA is simple and generally used parameter in fragility curve as ground motion intensity. However, the PGA has not good relationship with the inelastic structural behavior. So, $S_a$ and $S_d$ with more direct relationship for structural damage are used in fragility analysis as more useful intensity measures instead of PGA. The numerical fragility curves based on nonlinear time history analysis are compared with those obtained from simple method suggested in HAZUS program.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

Seismic Improvement of Staggered Truss Systems using Buckling Restrained Braces (비좌굴 가새를 이용한 스태거드 트러스 시스템의 내진성능향상)

  • Kim, Jin-Koo;Lee, Joon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.11-19
    • /
    • 2006
  • In this paper the seismic performances of 4, 10, and 30-story staggered truss systems (STS) were evaluated by observing the force-displacement relationship up io failure. The results were compared with the seismic performance of conventional moment resisting frames and braced frames. According to the analysis results, the STS showed relatively satisfactory lateral load resisting capability. However, in the mid- to high-rise STS, plastic hinges formed first at the chords were transferred to vertical members of the vierendeel panels, which formed a week link and subsequently leaded to brittle collapse of the structure. Therefore to enhance the ductility of STS it would be necessary to reinforce the vertical bracing members of the virendeel panels so that the plastic hinges, once toned in cord members of a virendeel panel, spread out to virendeel panels of neighboring stories.

Investigation on R/C Hyperbolic Paraboloid (HP) Saddle Shell Ultimate Behavior (R/C 쌍곡 포물선 '안장' 쉘의 극한 거동 연구(研究))

  • Min, Chang Shik;Kim, Saeng Bin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.11-20
    • /
    • 1993
  • Nonlinear inelastic behavior of an HP saddle shell has been examined by a finite element computer program developed on a Cray Y-MP. The mesh convergence is studied using three progressively refined finite element mesh models, $16{\times}16$, $32{\times}32$ and $64{\times}64$, for the elastic and inelastic analyses. It is shown that the $32{\times}32$ mesh model gives a solution that is very close to that given by the $64{\times}64$ mesh model, thus, showing a convergence. The inelastic analysis shows that the shell has a tremendous capacity to redistribute the stresses. At the ultimate, the concrete cracks and the reinforcement yieldings are spread out all over the shell, indicating that the stress distribution in the shell is approaching that given by the classical membrane theory. The present computer program provides a very useful tool for evaluating the nonlinear ultimate behavior of concrete shells during the design process.

  • PDF

A Numerical Study on Inplane Nonlinear Buckling Strengths of New Arches Subjected to Uniformly Distributed Loading (수직등분포하중을 받는 신형식단면 원형아치리브의 비선형 면내좌굴강도에 대한 해석연구)

  • Park, Jong-Sup;Kang, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.399-405
    • /
    • 2012
  • This paper investigates the characteristics of buckling loads for steel arches with new type cross section which is consisted of T-section and pipe-section. A general purpose finite-element program ABAQUS was used to evaluate the inelastic buckling strengths of the arches which included the influence of the geometric and material nonlinearity. According to the comparisons between earlier studies and results from finite-element analyses, new design equations should be developed for the new arches. New buckling factors were developed to consider influence of rise-to-span ratio and boundary conditions. It is found that the presented factors are sufficiently accurate to predict the inplane buckling loads of new type section steel arches subjected to uniformly distributed loading. The proposed equations can be used to investigate new type steel arches subjected to unsymmetrical loading and composited arches.

MPA-based IDA Using the Inelastic Displacement ratio, CR and the Collapse Intensity, RC (비탄성변위비와 붕괴강도비를 이용한 MPA기반의 IDA 해석법)

  • Han, Sang-Whan;Seok, Seung-Wook;Lee, Tae-Sub
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.33-39
    • /
    • 2010
  • This study develops an approximate procedure for incremental dynamic analysis (IDA) using modal pushover analysis (MPA) with empirical equations of the inelastic displacement ratio ($C_R$) and the collapse strength ratio ($R_C$). By using this procedure, it is not required to conduct linear or nonlinear response history analyses of multi- or single- degree of freedom (MDF) systems. Thus, IDA curves can be effortlessly obtained. For verification of the proposed procedure, the 6-, 9- and 20-story steel moment frames are tested under an ensemble of 44 ground motions. The results show that the MPA-based IDA with empirical equations of $C_R$ and $R_C$ produced accurate IDA curves of the MDF systems. The computing time is almost negligible compared to the exact IDA using repeated nonlinear response history analysis (RHA) of a structure and the original MPA-based IDA using repeated nonlinear RHA of modal SDF systems.