• Title/Summary/Keyword: 비탄성설계

Search Result 172, Processing Time 0.028 seconds

Direct Inelastic Design of Reinforced Concrete Members Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 철근콘크리트 부재의 직접 비탄성 설계)

  • Eom, Tae-Sung;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.345-356
    • /
    • 2008
  • In the previous study, direct inelastic strut-and-tie model (DISTM) was developed to perform inelastic design of reinforced concrete members by using linear analysis for their secant stiffness. In the present study, for convenience in design practice, the DISTM was further simplified so that inelastic design of reinforced concrete members can be performed by a run of linear analysis, without using iterative calculations. In the simplified direct inelastic strut-and-tie model (S-DISTM), a reinforced concrete member is idealized with compression strut of concrete and tension tie of reinforcing bars. For the strut and tie elements, elastic stiffness or secant stiffness is used according to the design strategy intended by engineer. To define the failure criteria of the strut and tie elements, concrete crushing and reinforcing bar fracture were considered. The proposed method was applied to inelastic design of various reinforced concrete members including deep beam, coupling beam, and shear wall. The design results were compared with the properties and the deformation capacities of the test specimens.

Application of Direct Inelastic Design for Steel Structures (철골조를 위한 직접비탄성설계법의 적용)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.1 s.74
    • /
    • pp.103-113
    • /
    • 2005
  • In the present study, the Direct Inelastic Design (DID) for steel structures developed in the previous study was improved to expand it applicability. The proposed design method can perform inelastic designs that address the design characteristics of steel structures: Group member design, discrete member sizes, variation of moment-carrying capacity according to axial force, connection types, and multiple design criteria and load conditions. The design procedure for the proposed method was established, and a computer program incorporating the design procedure was developed. The design results from the conventional elastic method and the DID were compared and verified by the existing computer program for nonlinear analysis. Compared with the conventional elastic design, the DID addressing the inelastic behavior reduced the total weight of steel members and enhanced the deformability of the structure. The proposed design method is convenient because it can directly perform inelastic design by using linear analysis for secant stiffness. Also, it can achieve structural safety and economical design by controlling deformations of the plastic hinges.

Three Dimensional Inelastic Dynamic Analysis Program of Building Structures-CANNY (건물의 3차원 비탄성 동적해석 프로그램)

  • 윤태호;조한욱
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.5-12
    • /
    • 1997
  • 최근 지진에서 발생한 건물의 손상을 살펴보면, 지진하중을 받는 건물의 3차원 거동에 의해서만 설명할 수 있는 경우가 많이 있다. 특히, 비대칭의 평면을 가지는 건물에서 발생하는 비틀림 거동은 2차원 모델로는 파악하기가 어렵기 때문에 구조물과 개별 부재의 3차원 거동을 보다 정확히 이해함으로써 구조물의 내진능력을 더 정확히 평가할 수 있다. 이를 위해서는 3차원 모델에 의한 비탄성 동적해석이 필요하게 된다. 현재, 전산기의 발달과 더불어 많은 자유도를 요구하는 3차원 구조물의 비탄성해석이 가능해지고, 구조부재의 비탄성거동에 관한 많은 실험으로 다양한 구조부재의 모델이 개발되어 지진에 대한 건물의 설계시 개인용 컴퓨터를 사용하여 이러한 3차원 비탄성 동적해석의 반영이 가능하게 되었다. 실제로 지진이 많이 발생하는 국가에서는 비탄성해석에 대해 많은 연구들이 진행되고 있으며, 일부 국가에서는 건물의 내진설계시 강진에 대한 비탄성해석을 요구하고 있다. 이 글에서는 삼성건설 기술연구소에서 도곡동 102고층 건물의 해석에 사용하였던 3차원 비탄성 동적해석 프로그램인 CANNY-E에 대하여 그 구성과 특징을 소개하고자 한다.

  • PDF

Inelastic Dynamic Demands of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 요구값)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.11-19
    • /
    • 2005
  • Seismic design of a building is usually performed by using the linear static procedure. However, the actual behavior of the building subjected to earthquake is inelastic and dynamic in nature. Therefore, inelastic dynamic analysis is required to evaluate the safety of the structure designed by the current design codes. For the validation, a RC special moment resisting frame building was chosen and designed by IBC 2003 representing new codes. Maximum plastic rotation and dissipated energy of some selected members were calculated for examining if the inelastic behavior of the building follows the intention of the code, and drift demand were calculated as well for checking if the building well satisfies the design drift limit. In addition, the effect of including internal moment resisting frames (non lateral resisting system) on analyses results was investigated. As a result of this study, the building designed by IBC 2003 showed the inelastic behavior intended in the code and satisfied the design drift limit. Furthermore, the internal moment resisting frames should be included in the analytical model as they affect the results of seismic analyses significantly.

Seismic Performance Evaluation of Building Structures Based on the Adaptive Lateral Load Distribution (적응적 횡하중 분배방법을 이용한 건축구조물의 내진성능평가)

  • 이동근;최원호;정명채
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.39-58
    • /
    • 2004
  • It is very important that predict the inelastic seismic behavior exactly for seismic performance evaluation of a building in the performance based seismic design. Evaluation method of seismic performance based on the pushover analysis reflected in PBSE was developed by some researchers. For the evaluation of inelastic global and local seismic responses by pushover analysis exactly. lateral load distribution should be adjusted and reflected the dynamic characteristics of structural system and various seismic ground motions. And performance point should be determined based on the evaluation of reasonable deformation capacity of a building more exactly. An effective method based on the improved the adaptive lateral load distribution and the equivalent responses of a multistory building is proposed in this study to efficiently estimate the accurate inelastic seismic responses. The proposed method can be used to evaluate the seismic performance for the global inelastic behavior of a building and to accurately estimate its local inelastic seismic responses. In order to demonstrate the accuracy and validity of this method, inelastic seismic responses estimated by the proposed method are compared with those obtained from other analytical methods.

INELASTIC RESPONSE SPECTRA CONSIDERING THE NONLINEARITY OF THE SOFT SOIL DUE TO THE WEAK SEISMIC EXCITATIONS (약진에 의한 연약지반의 비선형성을 고려한 비탄성 응답스펙트럼)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.249-258
    • /
    • 2003
  • 강진을 고려한 지진설계 규준은 약진지역에서는 불필요한 경제적 손실을 가져올 수 있고, 지반-구조물 상호작용을 고려한 성능기준 설계가 합리적인 지진설계를 위해서 중요하다는 것이 인식되었다. 이 연구에서는 연약지반 위에 놓인 단자유도계의 탄성, 비탄성 지진응답 해석을 지반의 비선형성을 고려하여 최대지진가속도를 0.07g와 0.11g로 조정한 11개 중, 약진에 대해 수행하였다. 지진 응답해석은 지반-구조물체계에 대해 유사 3차원 동적해석 프로그램으로 암반에 지진기록을 입력하여 한 단계에 일괄적으로 수행하였다. 연구 결과에 의하면 고정지반이나 선형지반을 가정한 지진응답 스펙트럼은 구조물-지반체계의 실제적인 거동을 보여주지 못하는 것으로 나타났으며, 합리적인 지진설계를 위해서는 지진규준에 정해진 일상적인 설계절차에 따라서 수행하는 것보다 다른 성질을 가진 여러 지반에 대해서 성능기준 지진설계를 수행하는 것이 필요하다. 약진을 받는 연약지반의 비선형성도 입력지진동을 증폭시켜 탄성, 비탄성 지진응답 스펙트럼에 심하게 영향을 미쳤으며, 그 현상은 특히 탄성 응답스펙트럼에서 두드러졌다.

  • PDF

Direct Inelastic Design for Steel Structures (강구조를 위한 직접비탄성설계법)

  • Eom, Tae Sung;Park, Hong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.181-190
    • /
    • 2004
  • A new inelastic design method performing iterative calculations using secant stiffness was developed. Since the proposed design method uses linear analysis, it is convenient and stable in numerical analysis. At the same time, the proposed design method can accurately estimate the inelastic strength and ductility demands of the members by performing iterative calculation. In the present study, the procedure of the proposed design method was established. Design examples using the proposed method were presented, and its advantages were highlighted by comparisons with existing design methods using elastic or plastic analysis. Unlike the existing inelastic design methods performing the preliminary design on the structure and checking its validity using nonlinear analysis, the proposed integrated analysis-design method can directly calculate the strength and ductility demands of each member. In addition, the proposed design method can address the inelastic design strategy intended by the engineer, such as strength and ductility limits of members and the design concept of strong-column and weak-beam. As a result, economical and safe design can be achieved.

Direct Inelastic Earthquake Design Using Secant Stiffness (할선강성을 이용한 직접비탄성내진설계)

  • 박홍근;엄태성
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.17-27
    • /
    • 2004
  • A new earthquake design method performing iterative calculations using secant stiffness was developed. The proposed design method has the advantages of convenience and stability in numerical analysis because it uses elastic analysis. At the same time, the proposed design method can accurately estimate the strength and ductility demands on the members because it performs the analysis on the inelastic behavior of structure using iterative calculation. In the present study, the procedure of the proposed design method was established, and a computer program incorporating the proposed method was developed. Design examples using the proposed method were presented, and its advantages were presented by the comparisons with existing design methods using elastic or inelastic analysis. The proposed design method, as an integrated method of analysis and design, can address the earthquake design strategy devised by the engineer. such as ductility limit on each member, the design concept of strong column - weak beam, and etc. In addition, through iterative calculations on the structure preliminarily designed only with member sizing, the strength and ductility demands of each member can be directly calculated so as to satisfy the given design strategy. As the result. economical and safe design can be achieved.

Analytical Approach to Evaluate the Inelastic Behaviors of Reinforced Concrete Strustured under Seismic Loads (지진하중을 받는 철근콘크리트 구조물의 해석적 방법에 의한 비탄성 거동 평가)

  • 김태훈;신현묵
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.113-124
    • /
    • 2001
  • 이 연구는 철근콘크리트 구조물의 비탄성 거동을 파악하고 합리적이면서 경제적인 내진설계기준의 개발을 위한 자료를 제공하는데 그 목적이 있다. 정학하고 올바른 내진성능의 파악을 위하여 비탄선 해석프로그램을 사용하였다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위해서 유한요소법을 이용하여 개발된 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축 전단모델과 콘크리트 소에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트 균열모델로서는 분산균열모델을 사용하였다. 또한, 횡방향 구속철근으로 인한 강도의 증가 효과를 고려하였다.

  • PDF

Investigation on Inelastic Behavior of Tall Buildings Based on Efficient Analysis Algorithm (효용적인 알고리즘에 의한 초고층건물의 비탄성 해석 연구)

  • Ju, Young Kyu;Hong, Won Kee;Kim, Sang Dae;Park, Chil Lim
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.115-123
    • /
    • 1998
  • In design of tall buildings, the flows of stress and ultimate strength of structures cannot be obtained by the elastic analysis alone. The current inelastic analysis are very impractical for practical engineer due to the amount of work involved in engineering calculation. In this paper the PC-based inelastic analysis by the residual strength ratio concepts is introduced. The efficiency of inelastic analysis is evaluated by comparing the results of inelastic analysis with those of elastic analysis for the existing tall buidling located in Seoul. Some modification in terms of lateral resisting structural system is proposed to improve the system ductility.

  • PDF