• Title/Summary/Keyword: 비축대칭

Search Result 57, Processing Time 0.035 seconds

Improvement of the Aerothermal Environment for a 90° Turning Duct by the Nonaxisymmetric Endwall (90° 곡관에서의 비축대칭 끝벽면을 이용한 열유동 환경 개선)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This paper presents the shape optimization of the endwall which improve the aerothermal environment of a gas turbine passage. A nonaxisymmetric endwall technique was adapted as the improving method. The turbine passage was simulated by a $90^{\circ}$ turning duct ($Re_D$=360,000). The main purpose of the present investigation was to focus on finding a nonaxisymmetric endwall with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerothermal environment can be achieved through the application of a nonaxisymmetric endwall.

비축대칭 소재에서 내부가 원형인 튜브의후방압출 해석

  • 양동열;배원병;김동권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.74-78
    • /
    • 1992
  • 외부가 비축대칭인 튜브의 수방압출은 자동차와 항공기등의 복잡한 부품을 만드는데 많이 사용된다. 이런 후방압출 제품의 변형 상태는 저자들의 논문에서 이미 밝힌 바와 같이 복잡하다. 그래서, 외부가 비출대칭인 튜브형상의 후방압출은 근래에 와서 연구되었다. 본 연구에서는 저자들의 논문 에서 제시된 동적가용속도장을 수정하여 비축대칭인 소재에서 내부가 원형인 튜브의 후방압출의 최종 단계를 해석하 고자 한다. 해석의 적용예로서는 정다각형 소재와 모서리가 둥근 직사각형(rounded rectangle)소재를 택하였다 제시된 속도장으로부터 단면 감소율과 형상비(aspect ratio)에 대하여 압출 하중과 압출된 소재의 평균 높이가 결정된다. 이론적인 결과와 비교하기 위하여 퓰림처리된 AIST-2024 알루미늄 소재로 실험하였다.

A Simple Analysis of the Cylindrical Shell Subjected to a Nonaxisymmetric Load (비축대칭 하중을 받는 원통형 쉘의 단순화 해석)

  • 남문희;이관희
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.179-187
    • /
    • 2000
  • When one considers the property of the axisymmetry, an analysis of an axisymmetric shell subjected to unaxisymmetric loading can be employed to save time and computer memory space. If one considers the Fourier series of the circumference direction of loads and displacements, an axisymmetric tank subjected to a nonaxisymmetric load can be treated as a frame element. Using the Fourier series, the authors derived the stiffness matrix of the cylindrical shell subjected to unaxisymmetric loading by the usual finite element method, and converted the stiffness matrix of a frame element into a transfer matrix by rearranging the stiffness matrix to apply the transfer matrix method. Here the most significant purpose of this paper is to achieve the fewest number of simultaneous equations for analysing an axisymmetric shell subjected to a nonaxisymmetric load. The results of the proposed method of the analysis of the cylindrical shell subjected to a wind load and a water load show no differences when compared to the other methods.

  • PDF

Improvement of the flow characteristics for a $90^{\circ}$ turning duct by the nonaxisymmetric endwall and endwall boundary layer fence ($90^{\circ}$ 곡관에서의 비축대칭 끝벽과 끝벽 경계층 판을 이용한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Sang-Jo;Seo, Jong-Chul;Kim, Kui-Soon;Jeong, Eun-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.406-413
    • /
    • 2011
  • This paper presents the shape optimization of a nonaxisymmetric endwall and endwall boundary layer fence which improve the aerothermal environment of a gas turbine passage. The endwall and fence methods were used simultaneously. The turbine passage was simulated by a $90^{\circ}$ turning duct ($Re_D$=360,000). The main purpose of the present investigation was to focus on finding a nonaxisymmetric endwall and boundary layer fence with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerothermal environment can be achieved through the application of a nonaxisymmetric endwall and boundary layer fence.

  • PDF

Development of Automated forging Design System for Forging Process Design of Stepped Asymmetric Parts (다단 비축대칭 부품의 단조 공정설계를 위한 단조품설계 자동화)

  • 조해용;허종행;민규식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.102-107
    • /
    • 2000
  • This study describes computer-aided design system for stepped asymmetric forgings. To establish the appropriate process sequence, an integrated approach based on a rule-base system was accomplished. This system has four modules, which are undercut prevention module, shape cognition module, 3D modelling module and corner/fillet correction module. These modules can be used independently or at all. The proposed shape cognition method could be widely used in forging design of asymmetric parts.

  • PDF

Viscoelastic stress analysis of nonaxisymmetrically heated cylindrical tubes (비축대칭 열하중을 받는 원통튜브의 점탄성 응력해석)

  • 박진석;서금석;김종인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.396-403
    • /
    • 1991
  • A solution is presented for the computation of the elastic-creep stresses in a hollow cylinder subjected to nonaxisymmetric temperature distribution. The creep problem is treated by the Maxwell creep model. Laplace transformation is used for reformation of the governing equation of elastic problem and Hooke's law in a function of .gamma. , .theta. , and creep constant. The governing equation is set up using the Airy stress function which leads to the biharmonic equation. The solution is obtained by using Fourer series method and Laplace inverse method used to obtain the stress components which include the variation of time. This solution shows excellent agreement with Lamkin's and Boley & Weiner's solution. The viscoelastic stresses are also obtained for the fuel rob tube subjecting nonaxisymmetric thermal load.

비축대칭 박판성형의 성형성에 관한 연구

  • 김석관;이재진;윤희도;송인섭;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.11-15
    • /
    • 2001
  • 본 논문에서는 냉장고를 운반하기 위하여 현재 냉장고 뒷판에 부착된 플라스틱 손잡이를 판금물인 냉장고 뒷판에 성형, 대체하는 연구를 수행하였다. 이 손잡이는 그 형상이 비축대칭으로써 평면변형(Plane STRAIN)과 축대칭변형(axisymmetric)이 좁은 공간상에 공존하는 형태를 띄고 있고 그 성형 깊이가 깊어 성형이 매우 어렵다. 따라서 성형을 가능케 하기 위하여 유한요소 해석을 이용한 형상의 최적설계를 통해 터짐을 방지하고 실험을 통해 주름이 발생하지 않도록 하였다. 현재 부착되어 있는 플라스틱 손잡이의 모양을 단공정으로 성형 시에는 재료의 유입이 원활하지 못하여 파단이 발생함으로 불가능하였다. 그러나 두공정으로 하여 첫공정에서는 축대칭에 가까운 형상으로 원하는 깊이를 얻고 두번째 공정에서 손잡이의 형상을 만들어 줌으로써 성형이 가능하다. 또한 냉장고 뒷판의 형상 변경을 통하여 재료의 유입을 원활히 함으로써 단공정으로의 성형도 가능함을 도출하였다.

A Study on the Process Design of Non-Axisymmetric Forging Components (비축대칭 형상의 단조 공정 설계에 관한 연구)

  • Kim, Y.H.;Bae, W.B.;Park, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.57-68
    • /
    • 1995
  • An upper bound elemental technique (UBET) program has been developed to predict forging load, die-cavity filling, preform in non-axisymmetric forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner, plane-strain part in lateral. The plane-strain and axisymmetric parts are combined by building block method. And the total energy is computed through combination of three deformation parts. A dumbbell-type preform has been obtained from height and volumetric compensations of the billet based on the backward simulation. Experimetns have been carried out with pure plasticine at room temperature. Theoretical predictions are in good agreement with expereimental results.

  • PDF

Analysis on the thermal development of radiatively participating pipe flow with nonaxisymmetric convective heat loss (비축대칭 대류열손실 경계조건하에서 원관내 복사에 관여하는 매질의 층류 열적 발달의 수치해석)

  • ;;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2995-3002
    • /
    • 1995
  • The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduction, convection, and radiation were considered with azimuthally varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer equation was solved by the discrete ordinates method (or called S$_{N}$ method). The energy equation was solved by control volume based finite difference technique. A parametric study was performed by varying the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown that initially the radiatively active medium could be more efficiently cooled down compared with the cases otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the contribution of conduction became to exceed that of radiation.n.

UBET Analysis of Combined Forging of Non-Axisymmetric Shapes With Inclined Protrusion (경사진 돌출부가 있는 비축대칭 복합단조의 상계요소해석)

  • 윤정호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1990
  • The study is concerned with the analysis of combined forging of non-axisymmetric shapes with inclined protrusions by UBET technique. Work hardening is considered for the given range of strain rate during the forging process. A complex shape with inclined cavities is analyzed by subdividing the workpiece into finite UBET elements for which simple velocity fields are applicable. An experimental set-up was designed and manufactured for the experiment, and experiments are carried out with lead billets. The devised set-up can be used for closed-die forging of complex shapes with protrusions in which the dies can be separated automatically for easy removal of the forged products. Based on the derived kinematically admissible velocity fields for corresponding UBET elements, general computer programs have been developed. Since the energy dissipation rate for each elemental region is provided by subprograms (Subroutine or Function), the developed program can be applied to the forging problems of various shapes. The present study has shown that the method developed can be effectively applied to forging of non-axisymmetric shapes with complicated protrusions.