Improvement of the Aerothermal Environment for a 90° Turning Duct by the Nonaxisymmetric Endwall

90° 곡관에서의 비축대칭 끝벽면을 이용한 열유동 환경 개선

  • 조종재 (부산대학교 항공우주공학과) ;
  • 김귀순 (부산대학교 항공우주공학과)
  • Received : 2011.06.17
  • Accepted : 2011.07.11
  • Published : 2011.08.30

Abstract

This paper presents the shape optimization of the endwall which improve the aerothermal environment of a gas turbine passage. A nonaxisymmetric endwall technique was adapted as the improving method. The turbine passage was simulated by a $90^{\circ}$ turning duct ($Re_D$=360,000). The main purpose of the present investigation was to focus on finding a nonaxisymmetric endwall with minimum total pressure loss in the passage and heat transfer coefficient on the endwall of the duct. An approximate optimization method was used for the investigation to secure the computational efficiency. Results indicated that a significant improvement in aerothermal environment can be achieved through the application of a nonaxisymmetric endwall.

본 논문에서는 가스터빈 유로의 열유동 환경을 개선하기 위해 끝벽면의 형상에 대한 최적화를 수행하였으며, 비축대칭 끝벽면을 이용한 방법을 적용하였다. 터빈 유로를 모사하기 위해 $90^{\circ}$ 곡관을 이용하였다. 터빈 유로에서의 전압력 손실과 유로 끝벽면에서의 열전달 계수를 최소화하는 비축대칭 끝벽면형상 도출을 연구의 목적으로 하였으며, 최적화 과정의 효율성을 위해 근사 최적화 기법을 적용하였다. 연구결과를 통해, 최적화된 비축대칭 끝벽면에 의한 상당한 공력열환경 개선을 확인할 수 있었다.

Keywords

References

  1. Sharma, P., Butler, T. L., "Predictions of Endwall Losses and Secondary Flows in Axial Flow Turbine Cascades," Journal of Turbomachinery, Vol. 109, 1987, pp. 229-236 https://doi.org/10.1115/1.3262089
  2. Rose, M. G., "Non-Axisymmetric Endwall Profiling in the HP NGV's of an Axial Flow Gas Turbine," ASME Paper No. 249-GT-94, 1994
  3. Brennan, G., Harvey, N. W., Rose, M. G., Fomison, N. and Taylor, M. D., "Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymetric End Walls: Part I: Turbine Design," ASME Paper No. 2001-GT-0444, 2001
  4. Rose, M. G., Harvey, N. W., Seaman, P., Newman, D. A. and McManus, D., "Improving the Efficiency of the Trent 500 HP Turbine Using Non-Axisymetric End Walls: Part II: Experimental Validation," ASME Paper No. 2001-GT-0505, 2001
  5. Germain, T., Nagel, M., Raab, I., Schupbach, P., Abhari, R. S. and Rose, M., "Improving Efficiency of a High Work Turbine Using Nonaxisymmetric Endwalls-Part I: Endwall Design and Performance, Journal of Turbomachinery," Vol. 132, No. 2, 2010
  6. Kopper, F.C., Milano, R. and Vanco, M., "Experimental Investigation of Endwall Profiling in a Turbine Vane Cascade," AIAA J., Vol. 19, No. 8, 1981, pp.1020-1040
  7. iSIGHT Designer's Guide, Version FD 3.1, Engineous Software, Inc., 2008
  8. Gambit I Modeling Guide, Fluent Inc., 2004
  9. Fluent User's Guide, Version 6.3, Fluent Inc., 2006
  10. Boyle, M.T., Simonds, M. and Poon, K., "A Comparison of Secondary Flow in a Vane Cascade and a Curved Duct," Heat Transfer in Gas Turbine Engines and Three Dimensional Flows, Vol. 103, 1988, pp.85-93
  11. Wiedner, B. G. and Camci, C., "Passage Flow Structure and its Influence on Endwall Heat Transfer in a $90^{\circ}$ Turning Duct: Mean Flow and High Resolution Endwall Heat Transfer Experiments," Journal of Turbomachinery, Vol. 119, No. 1, 1997, pp.39-50 https://doi.org/10.1115/1.2841009
  12. van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method," J. Com. Phys., Vol. 32, 1979, pp.101-136 https://doi.org/10.1016/0021-9991(79)90145-1
  13. Yakhot, V., Orszag, S., Thangman, S., Gatski, T. B. and Speziale, C. G., "Development of Turbulence Models for Shear Flows by a Double Expansion Technique," Physics of fluids. A, Fluid dynamics, Vol. 4, No. 7, 1992, pp.1510-1520 https://doi.org/10.1063/1.858424
  14. Zess, G. A., and Thole, K. A., "Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane," Journal of Turbomachinery, Vol. 124, 2002, pp.167-175 https://doi.org/10.1115/1.1460914
  15. Kim, S. E. and Choudhury, D. A., "Near-Wall Treatment Using Wall Functions Sensitized to Pressure Gradient," ASME FED, Vol. 217, 1995
  16. Iman, R. L., Davenport, J. M. and Zeigler, D. K., "Latin hypercube sampling (program user's guide)," OSTI 5571631., 1980
  17. Myers, R. H. and Montgomery, D. C., "Response Surface Methodology - Process and Product Optimization Using Designed Experiments," John Wiley & Sons, New York, 1995
  18. Piegl, L. and Tiller, W., The NURBS Book, Springer-Verlag, 1995