• Title/Summary/Keyword: 비직교 좌표계

Search Result 51, Processing Time 0.027 seconds

Computation of Dynamic Damping Coefficients for Projectiles using Steady Motions (정상 운동을 이용한 발사체의 동적 감쇠계수 계산)

  • Park,Su-Hyeong;Gwon,Jang-Hyeok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.19-26
    • /
    • 2003
  • A steady prediction method of dynamic stability derivatives is presented in the unified framework of the unsteady Euler equations. New approach does not require any modification of the governing equations except addition of non-inertial force terms. The present methods are applied to compute the pitch-damping coefficients using the lunar coning and the lunar helical motions in the Cartesian coordinate frame. The results for the ANSR and the Basic Finner are in good agreement with the PNS data, range data, and the results using the unsteady prediction method. The results show that the steady approach using the unified governing equations in the Cartesian coordinate frame can be successfully applied to predict the pitch-damping coefficients.

Numerical Analysis of 3-D Turbulent Flows Around a High Speed Train Including Cross-Wind Effects (측풍영향을 고려한 고속전철 주위의 3차원 난류유동 해석)

  • Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • An iterative time marching procedure for solving incompressible turbulent flow has been applied to the flows around a high speed train including cross-wind effects. This procedure solves three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using first-order accurate schemes for the time derivatives and third/second-order accurate schemes for the spatial derivatives. Turbulent flows have been modeled by Baldwin-Lomax turbulent model. To validate present procedure, the flow around a high speed train at zero yaw angle was simulated and compared with experimental data. Generally good agreement with experiments was achieved. The flow fields around the high speed train at 9.2°, 16.7°, and 45° of yaw angle were also simulated.

  • PDF

DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX (범용 열/유체 유동해석 프로그램 NUFLEX의 개발)

  • Hur, Nahm-Keon;Won, Chan-Shik;Ryou, Hong-Sun;Son, Gi-Hun;Kim, Sa-Ryang
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.8-13
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG $k-{\varepsilon}$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray models. For the purpose of evaluation of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX (범용 열/유체 유동해석 프로그램 NUFLEX의 개발)

  • Hur, Nahm-Keon;Won, Chan-Shik;Ryou, Hong-Sun;Son, Gi-Hun;Kim, Sa-Ryang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG ${\kappa}-{\varepsilon}\;SST$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray model. For the purpose of verification of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

  • PDF

A Study on the Prediction of Water-Temperature near the Confluence of Banbyeoncheon by Using the KU-RLMS Model (KU-RUMS 모형을 이용한 반변천 합류부 수온 예측에 관한 연구 KU-RLMS)

  • Lee, Yong-Chin;Lee, Nam-Joo;Lyu, Si-Wan;Yeo, Hong-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1219-1223
    • /
    • 2007
  • 수온은 수계에서 가장 중요한 물리적 특성 중 하나로서, 생물 군집, 특히 어류와 무척추 동물에 관련된 많은 수질 인자에 영향을 미친다. 하천의 생태학적 모습을 개선하기 위한 하천 복원 사업 수행에 있어서, 서식처 및 산란처 조건으로서의 수온 조사 및 모델링의 필요성이 점차 증가하고 있는 상황이다. 본 연구는 낙동강의 중상류에 위치한 반변천 합류부에 평면 이차원 비정상 수치모형인 KU-RLMS 모형을 적용하여 수온의 변화 특성을 규명할 목적으로 수행하였다. KU-RLMS 모형은 하천 및 저수지의 국부적인 수리, 수질, 유사이동 해석을 위해 개발된 평면 이차원 비정상 수치모형이다. 직사각형 격자를 사용하는 유한차분법의 단점을 보완하기 위해, 수심적분된 2차원 연속방정식, 운동량방정식, 이송확산방정식을 불규칙한 경계를 현실적으로 모사할 수 있는 직교곡선 좌표계로 변환한 방정식을 사용한다. 이 모형은 흐름, 농도, 지형변화를 조합하여 계산할 수 있는 모형으로서 점착성 및 비점착성 유사의 이동, 보존성 및 비보존성 오염물질의 이동, 수온 변화를 모의할 수 있다. 수치모형 적용을 위한 현황분석으로 안동 및 임하 조정지댐의 방류량, 안동 수위관측소의 수위, 법흥교 및 포진교 지점의 수온 자료를 분석하였다. 이송확산모형의 보정을 위해, 안동대교 지점의 수온 횡분포 측정자료를 사용하여 확산계수에 대한 매개변수 추정 및 검증을 수행하였다. 또한, 안동조정지댐과 임하조정지댐의 방류량 및 방류수온을 고려하여 수치모의조건을 결정하였으며, 각 조건에 대한 수온 변화 특성을 분석하였다.

  • PDF

Numerical Experiments of Bar Migration in Meandering Channels (사행하천에서 사주의 이동특성에 관한 수치실험)

  • Jang, Chang-Lae;Jung, Kwansue
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.209-216
    • /
    • 2006
  • This study is to analyse the characteristics of bar migration, which is important roles to bank erosion and meandering development, for the meandering channels with erodible bed by using a 2-D numerical model in the generalized coordinate systems. The results of the numerical experiments showed that the features of bar migration were affected by the meandering wavelength to the width ratio, and had a relatively good agreement with the criterion for bar migration through a bend suggested by Kinoshita and Miwa (1974). The bar migrated with speed in the channel with long wavelength and broad width, and the criterion for bar migration was increased. The bar celerity was decreased abruptly near the criterion.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

A Study on Grid Dependencies of the Numerical Solutions for Ship Viscous Flows (배주위 점성유동장에 대한 수치해의 격자의존성에 관한 연구)

  • Kang, K.J.;Lee, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.58-65
    • /
    • 1994
  • It is very important to understand characteristics of solution due to the variation of computational grid sizes, especially when turbulence model not incorporating wall-function is used. The present paper performs numerical investigation on the grid dependency of numerical solution for three dimensional turbulent flow field around a ship. In the present study a finite volume method with a modified sub-grid scale turbulence model and a numerically constructed non-orthogonal curvilinear coordinate system capable of conforming complex ship geometries are used. Numerical studies are then performed for a mathematical Wigley hull and the Series 60, $C_B=0.8$ hull forms. The results for various grid sizes are compared with each other and with measured data to show grid dependencies of numerical solutions.

  • PDF

NUMERICAL ANALYSIS OF MULTIPHASE FLOW BY NUFLEX (NUFLEX를 이용한 다상유동의 수치해석)

  • Yu, Tae-Jin;Suh, Young-Ho;Son, Gi-Hun;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.21-25
    • /
    • 2007
  • A general purpose program NUFLEX has been extended for two-phase flows with topologically complex interface and cavitation flows with liquid-vapor phase change caused by large pressure drop. In analysis of two-phase flow, the phase interfaces are tracked by employing a LS(Level Set) method. Compared with the VOF(Volume-of-Fluid) method based on a non-smooth volume-fraction function, the LS method can calculate an interfacial curvature more accurately by using a smooth distance function. Also, it is quite straightforward to implement for 3-D irregular meshes compared with the VOF method requiring much more complicated geometric calculations. Also, the cavitation process is computed by including the effects of evaporation and condensation for bubble formation and collapse as well as turbulence in flows. The volume-faction and continuity equations are adapted for cavitation models with phase change. The LS and cavitation formulation are implemented into a general purpose program for 3-D flows and verified through several test problems.

Reduction of Coupling in Tensile and Flexure Composite Specimens (인장 및 굽힘 복합재료 시험편의 커플링 완화 방안)

  • 정일섭
    • Composites Research
    • /
    • v.12 no.2
    • /
    • pp.82-90
    • /
    • 1999
  • The mechanical properties of generally orthotropic materials are conventionally measured by performing off-axis tensile and flexure tests. However, the inevitable coupling between tension and shear in case of tensile test or bending and twisting in flexure test case induces nonuniform displacement and stress fields. Consequential stress concentration along the boundary of specimens would result in inaccurate modulus and underestimated strength. This paper proposes the variation of specimen geometry in terms of appropriate obliquity of loaded boundary. For the purpose, classical lamination theory is transformed into skewed coordinate, and characteristic equations for both of unidirectional and laminated composite specimens are formulated. Finite element analysis is employed to show the validity of the skewedness in tensile and bending test specimens.

  • PDF