• 제목/요약/키워드: 비지도 기계학습

검색결과 36건 처리시간 0.023초

머신러닝 기반 유클리드 거리를 이용한 붓꽃 품종 분류 재구성 (A Reconstruction of Classification for Iris Species Using Euclidean Distance Based on a Machine Learning)

  • 남수태;신성윤;진찬용
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.225-230
    • /
    • 2020
  • 기계학습은 데이터를 기반으로 한 컴퓨터를 학습시켜 컴퓨터 스스로 데이터의 경향성을 파악하게 하여 새로운 입력 데이터의 출력을 예측하도록 하는 알고리즘이다. 기계학습은 크게 지도학습, 비지도학습, 강화학습으로 나눌 수 있다. 지도학습은 데이터에 대한 레이블이 주어진 상태로 기계를 학습시키는 방법이다. 즉, 데이터 및 레이블의 쌍을 통해 해당 시스템의 함수를 추론하는 방법으로 새로운 입력 데이터에 대해서 추론한 함수를 이용하여 결과를 예측한다. 그리고 예측하는 결과 값이 연속 값이면 회귀분석, 예측하는 결과 값이 이산 값이면 분류로 사용된다. 새로운 붓꽃 데이터 Sepal length(5.01)과 Sepal width(3.43)을 이용하여 기초 데이터와 유클리드 거리를 분석하였다. 분석결과, 테이블 3의 8번(5, 3.4, setosa), 27번(5, 3.4, setosa), 41번(5, 3.5, setosa), 44번(5, 3.5, setosa) 그리고 40번(5.1, 3.4, setosa)의 데이터 순으로 유사도가 높은 붓꽃으로 분류되었다. 따라서 이론적 실무적 시사점을 제시하였다.

IOT 환경에서의 오토인코더 기반 특징 추출을 이용한 네트워크 침입탐지 시스템 (Network Intrusion Detection System Using Feature Extraction Based on AutoEncoder in IOT environment)

  • 이주화;박기현
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권12호
    • /
    • pp.483-490
    • /
    • 2019
  • 네트워크 침입 탐지 시스템(NIDS)에서 분류의 기능은 상당히 중요하며 탐지 성능은 다양한 특징에 따라 달라진다. 최근 딥러닝에 대한 연구가 많이 이루어지고 있으나 네트워크 침입탐지 시스템에서는 많은 수의 트래픽과 고차원의 특징으로 인하여 속도가 느려지는 문제점이 있다. 따라서 딥러닝을 분류에 사용하는 것이 아니라 특징 추출을 위한 전처리 과정으로 사용하며 추출한 특징을 기반으로 분류하는 연구 방법을 제안한다. 딥러닝의 대표적인 비지도 학습인 Stacked AutoEncoder를 사용하여 특징을 추출하고 Random Forest 분류 알고리즘을 사용하여 분류한 결과 분류 성능과 탐지 속도의 향상을 확인하였다. IOT 환경에서 수집한 데이터를 이용하여 정상 및 공격트래픽을 멀티클래스로 분류하였을 때 99% 이상의 성능을 보였으며, AE-RF, Single-RF와 같은 다른 모델과 비교하였을 때도 성능 및 탐지속도가 우수한 것으로 나타났다.

비지도학습 오토 엔코더를 활용한 네트워크 이상 검출 기술 (Network Anomaly Detection Technologies Using Unsupervised Learning AutoEncoders)

  • 강구홍
    • 정보보호학회논문지
    • /
    • 제30권4호
    • /
    • pp.617-629
    • /
    • 2020
  • 인터넷 컴퓨팅 환경의 변화, 새로운 서비스 출현, 그리고 지능화되어 가는 해커들의 다양한 공격으로 인한 규칙 기반 침입탐지시스템의 한계점을 극복하기 위해 기계학습 및 딥러닝 기술을 활용한 네트워크 이상 검출(NAD: Network Anomaly Detection)에 대한 관심이 집중되고 있다. NAD를 위한 대부분의 기존 기계학습 및 딥러닝 기술은 '정상'과 '공격'으로 레이블링된 훈련용 데이터 셋을 학습하는 지도학습 방법을 사용한다. 본 논문에서는 공격의 징후가 없는 일상의 네트워크에서 수집할 수 있는 레이블링이 필요 없는 데이터 셋을 이용하는 비지도학습 오토 엔코더(AE: AutoEncoder)를 활용한 NAD 적용 가능성을 제시한다. AE 성능을 검증하기 위해 NSL-KDD 훈련 및 시험 데이터 셋을 사용해 정확도, 정밀도, 재현율, f1-점수, 그리고 ROC AUC (Receiver Operating Characteristic Area Under Curve) 값을 보인다. 특히 이들 성능지표를 대상으로 AE의 층수, 규제 강도, 그리고 디노이징 효과 등을 분석하여 레퍼런스 모델을 제시하였다. AE의 훈련 데이터 셋에 대한 재생오류 82-th 백분위수를 기준 값으로 KDDTest+와 KDDTest-21 시험 데이터 셋에 대해 90.4%와 89% f1-점수를 각각 보였다.

기계학습 접근법에 기반한 유전자 선택 방법들에 대한 리뷰 (A review of gene selection methods based on machine learning approaches)

  • 이하정;김재직
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.667-684
    • /
    • 2022
  • 유전자 발현 데이터는 각 유전자에 대해 mRNA 양의 정도를 나타내고, 그러한 유전자 발현량에 대한 분석은 질병 발생에 대한 메커니즘을 이해하고 새로운 치료제와 치료 방법을 개발하는데 중요한 아이디어를 제공해오고 있다. 오늘날 DNA 마이크로어레이와 RNA-시퀀싱과 같은 고출력 기술은 수천 개의 유전자 발현량을 동시에 측정하는 것을 가능하게 하여 고차원성이라는 유전자 발현 데이터의 특징을 발생시켰다. 이러한 고차원성으로 인해 유전자 발현 데이터를 분석하기 위한 학습 모형들은 과적합 문제에 부딪히기 쉽고, 이를 해결하기 위해 차원 축소 또는 변수 선택 기술들이 사전 분석 단계로써 보통 사용된다. 특히, 사전 분석 단계에서 우리는 유전자 선택법을 이용하여 부적절하거나 중복된 유전자를 제거할 수 있고 중요한 유전자를 찾아낼 수도 있다. 현재까지 다양한 유전자 선택 방법들이 기계학습의 맥락에서 개발되어왔다. 본 논문에서는 기계학습 접근법을 사용하는 최근의 유전자 선택 방법들을 집중적으로 살펴보고자 한다. 또한, 현재까지 개발된 유전자 선택 방법들의 근본적인 문제점과 앞으로의 연구 방향에 대해 논의하고자 한다.

반복적 기법을 사용한 그래프 기반 단어 모호성 해소 (Graph-Based Word Sense Disambiguation Using Iterative Approach)

  • 강상우
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제13권2호
    • /
    • pp.102-110
    • /
    • 2017
  • 최근 자연어 처리 분야에서 단어의 모호성을 해소하기 위해서 다양한 기계 학습 방법이 적용되고 있다. 지도 학습에 사용되는 데이터는 정답을 부착하기 위해 많은 비용과 시간이 필요하므로 최근 연구들은 비지도 학습의 성능을 높이기 위한 노력을 지속적으로 시도하고 있다. 단어 모호성 해소(word sense disambiguation)를 위한 비지도 학습연구는 지식 기반(knowledge base)를 이용한 방법들이 주목받고 있다. 이 방법은 학습 데이터 없이 지식 기반의 정보을 이용하여 문장 내에서 모호성을 가지는 단어의 의미를 결정한다. 지식 기반을 이용한 방법에는 그래프 기반방식과 유사도 기반 방법이 대표적이다. 그래프 기반 방법은 모호성을 가지는 단어와 그 단어가 가지는 다양한 의미들의 집합 간의 모든 경로에 대한 의미 그래프를 구축한다는 장점이 있지만 불필요한 의미 경로가 추가되어 오류를 증가시킨다는 단점이 있다. 이러한 문제를 해결하기 위해 본 논문에서는 그래프 구축을 위해 불필요한 간선들을 배제하면서 반복적으로 그래프를 재구축하는 모델을 제안한다. 또한, 구축된 의미 그래프에서 더욱 정확한 의미를 예측하기 위해 하이브리드 유사도 예측 모델을 적용한다. 또한 제안된 모델은 다국어 어휘 의미망 사전인 BabelNet을 사용하기 때문에 특정 언어뿐만 아니라 다양한 언어에도 적용 가능하다.

GANs(Generative Adversarial Networks)를 활용한 모션캡처 이미지의 hole-filling 기법 연구 (Study on hole-filling technique of motion capture images using GANs (Generative Adversarial Networks))

  • 신광성;신성윤
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2019년도 춘계학술대회
    • /
    • pp.160-161
    • /
    • 2019
  • 3차원 객체를 모델링 하기 위한 방법으로 3D 스캐너를 이용하는 방법과 모션캡처 시스템을 이용하는 방법 그리고 키넥트(Kinect) 시스템을 이용하는 방법 등이 있다. 이러한 방법을 통해 3차원 객체를 생성하는 과정에서 가려짐에 의해 촬영되지 않는 부분이 발생한다. 완벽한 3차원 객체를 구현하기 위해서는 가려진 부분을 임의로 채워줘야 하는 상황이 발생한다. 다양한 영상처리 방법을 통해 가져져 촬영되지 않은 부분을 메우는 기법이 존재한다. 본 연구에서는 보다 자연스러운 hole filling을 위한 방법으로 비지도기계학습의 최신 트렌드인 GANs를 이용한 방법을 제안한다.

  • PDF

기계학습 클러스터링을 이용한 승하차 패턴에 따른 서울시 지하철역 분류 (Classification of Seoul Metro Stations Based on Boarding/ Alighting Patterns Using Machine Learning Clustering)

  • 민미경
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.13-18
    • /
    • 2018
  • 본 연구에서는 기계학습을 이용하여 서울시 지하철역의 승하차 패턴에 따라 지하철역을 분류한다. 대상 데이터는 공공데이터 포탈에서 제공하는 2008년부터 2017년까지 서울 지하철 233개 역에서의 매일 매시간별 승차객 숫자와 하차객 숫자이다. 기계학습 기법으로는 가우시안 혼합 모델(GMM)과 K-평균 클러스터링을 사용한다. 이용객의 승차시간과 하차시간의 분포는 가우시안 혼합 모델로 모델링할 수 있으며, 이를 K-평균 클러스터링을 이용하여 비지도 학습시킨다. 학습결과 서울시 지하철역은 승하차 패턴에 따라 4개의 그룹으로 분류되었다. 본 연구의 결과는 서울시 지하철역의 특성을 파악하여 경제, 사회, 문화적으로 분석하기 위한 주요 기반 지식으로 활용될 수 있다. 본 연구의 방법은 클러스터링이 필요한 모든 공공데이터나 빅데이터에 적용할 수 있다.

후두음성 질환에 대한 인공지능 연구 (Artificial Intelligence for Clinical Research in Voice Disease)

  • 석준걸;권택균
    • 대한후두음성언어의학회지
    • /
    • 제33권3호
    • /
    • pp.142-155
    • /
    • 2022
  • Diagnosis using voice is non-invasive and can be implemented through various voice recording devices; therefore, it can be used as a screening or diagnostic assistant tool for laryngeal voice disease to help clinicians. The development of artificial intelligence algorithms, such as machine learning, led by the latest deep learning technology, began with a binary classification that distinguishes normal and pathological voices; consequently, it has contributed in improving the accuracy of multi-classification to classify various types of pathological voices. However, no conclusions that can be applied in the clinical field have yet been achieved. Most studies on pathological speech classification using speech have used the continuous short vowel /ah/, which is relatively easier than using continuous or running speech. However, continuous speech has the potential to derive more accurate results as additional information can be obtained from the change in the voice signal over time. In this review, explanations of terms related to artificial intelligence research, and the latest trends in machine learning and deep learning algorithms are reviewed; furthermore, the latest research results and limitations are introduced to provide future directions for researchers.

기계 학습을 활용한 보안 이상징후 식별 알고리즘 개발 (Development of Security Anomaly Detection Algorithms using Machine Learning)

  • 황보현우;김재경
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.1-13
    • /
    • 2022
  • 인터넷, 모바일 등 네트워크 기술이 발전함에 따라 내외부 침입 및 위협으로부터 조직의 자원을 보호하기 위한 보안의 중요성이 커지고 있다. 따라서 최근에는 다양한 보안 로그 이벤트에 대하여 보안 위협 여부를 사전에 파악하고, 예방하는 이상징후 식별 알고리즘의 개발이 강조되고 있다. 과거 규칙 기반 또는 통계 학습에 기반하여 개발되어 온 보안 이상징후 식별 알고리즘은 점차 기계 학습과 딥러닝에 기반한 모델링으로 진화하고 있다. 본 연구에서는 다양한 기계 학습 분석 방법론을 활용하여 악의적 내부자 위협을 사전에 식별하는 최적 알고리즘으로 LSTM-autoencoder를 변형한 Deep-autoencoder 모형을 제안한다. 본 연구는 비지도 학습에 기반한 이상탐지 알고리즘 개발을 통해 적응형 보안의 가능성을 향상시키고, 지도 학습에 기반한 정탐 레이블링을 통해 기존 알고리즘 대비 오탐율을 감소시켰다는 점에서 학문적 의의를 갖는다.

유전자 발현 데이터 기반 구강암에서의 세포 조성 차이 분석 (Distinct cell subtype composition using gene expression data in oral cancer)

  • 이제근
    • 한국융합학회논문지
    • /
    • 제10권8호
    • /
    • pp.59-65
    • /
    • 2019
  • 암 조직에는 다양한 형태의 세포가 존재하지만, 이들의 조성을 실험적으로 확인하기는 매우 어렵다. 본 연구에서는 유전자 발현 데이터에 통계적 기계학습 모델을 적용하여 각 샘플의 세포 조성을 추론하고, 이러한 세포 조성이 암조직과 정상 조직간에 차이가 있는지를 확인하였다. 두 가지 서로 다른 회귀 모델을 이용하여 세포 조성을 예측한 결과 CD8 T cell과 Neutrophil이 구강암 조직에서 정상 조직에 비해 증가함을 확인할 수 있었다. 또한 비지도학습 중 하나인 t-SNE를 적용하여, 유추된 세포 조성에 의해 정상 조직과 구강암 조직이 서로 군집을 이루고 있음을 확인하였고, 지도 학습 기반의 다양한 분류 알고리즘들을 이용하여 세포 조성 정보를 이용하여 구강암과 정상 조직을 예측하는 것이 가능함을 보였다. 이 연구는 구강암의 면역 세포 침투에 대한 이해도를 증진하는데에 도움을 줄 수 있을 것이다.