• Title/Summary/Keyword: 비쥬얼 서보

Search Result 10, Processing Time 0.023 seconds

Underwater Docking of a Visual Servoing Autonomous Underwater Vehicle Using a Single Camera (단일 카메라를 이용한 비쥬얼 서보 자율무인잠수정의 수중 도킹)

  • 이판묵;전봉환;홍영화;오준호;김시문;이계홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.316-320
    • /
    • 2003
  • This paper introduces an autonomous underwater vehicle (AUV) model, ASUM, equipped with a visual servo control system to dock into an underwater station with a camera and motion sensors. To make a visual servoing AUV, this paper implemented the visual servo control system designed with an augmented state equation, which was composed of the optical flow model of a camera and the equation of the AUV's motion. The system design and the hardware configuration of ASUM are presented in this paper. ASUM recognizes the target position by processing the captured image for the lights, which are installed around the end of the cone-type entrance of the duct. Unfortunately, experiments are not yet conducted when we write this article. The authors will present the results for the AUV docking test.

  • PDF

A Visual Servo Algorithm for Underwater Docking of an Autonomous Underwater Vehicle (AUV) (자율무인잠수정의 수중 도킹을 위한 비쥬얼 서보 제어 알고리즘)

  • 이판묵;전봉환;이종무
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Autonomous underwater vehicles (AUVs) are unmanned, underwater vessels that are used to investigate sea environments in the study of oceanography. Docking systems are required to increase the capability of the AUVs, to recharge the batteries, and to transmit data in real time for specific underwater works, such as repented jobs at sea bed. This paper presents a visual :em control system used to dock an AUV into an underwater station. A camera mounted at the now center of the AUV is used to guide the AUV into dock. To create the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and deriver a state equation for the visual servo AUV. Further, this paper proposes a discrete-time MIMO controller, minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servo AUV simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

Underwater Docking of an AUV Using a Visual Servo Controller (비쥬얼 서보 제어기를 이용한 자율무인잠수정의 도킹)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Chong-Moo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.142-148
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time for specific underwater works, such as repeated jobs at sea bed. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera mounted at the nose center of the AUV. To make the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and derives a state equation for the visual servoing AUV. This paper proposes a discrete-time MIMO controller minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servoing AUV, simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

  • PDF

Experimental Study on Underwater Docking of a Visual Servoing Autonomous Underwater Vehicle (비쥬얼 서보 자율무인잠수정의 수중 도킹에 관한 실험적 연구)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Ji-Hong;Kim, Sea-Moon;Hong, Young-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.89-93
    • /
    • 2003
  • The Korea Research Institute of Ships and Ocean Engineering (KRISO), the ocean engineering branch of KORDI, has designed and manufactured a model of an autonomous underwater vehicle (AUV) to test underwater docking. This paper introduces the AUV model, ASUM, equipped with a visual servo control system to dock into an underwater station with a camera and motion sensors. To make a visual servoing AUV, this paper implemented the visual servo control system designed with an augmented state equation, which was composed of the optical flow model of a camera and the equation of the AUV's motion. The system design and the hardware configuration of ASUM are presented in this paper. A small long baseline acoustic positioning system was developed to monitor and record the AUV's position for the experiment in the Ocean Engineering Basin of KRISO, KORDI. ASUM recognizes the target position by processing the captured image for the lights, which are installed around the end of the cone-type entrance of the duct. Unfortunately, experiments are not yet conducted when we write this article. The authors will present the results for the docking test of the AUV in near future.

  • PDF

Visual servo control of robots using fuzzy-neural-network (퍼지신경망을 이용한 로보트의 비쥬얼서보제어)

  • 서은택;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.566-571
    • /
    • 1994
  • This paper presents in image-based visual servo control scheme for tracking a workpiece with a hand-eye coordinated robotic system using the fuzzy-neural-network. The goal is to control the relative position and orientation between the end-effector and a moving workpiece using a single camera mounted on the end-effector of robot manipulator. We developed a fuzzy-neural-network that consists of a network-model fuzzy system and supervised learning rules. Fuzzy-neural-network is applied to approximate the nonlinear mapping which transforms the features and theire change into the desired camera motion. In addition a control strategy for real-time relative motion control based on this approximation is presented. Computer simulation results are illustrated to show the effectiveness of the fuzzy-neural-network method for visual servoing of robot manipulator.

  • PDF

Visual Servoing System Based on Space Variant Imaging for Rehabilitation Robots (공간 변화 영상을 이용한 재활로봇의 비쥬얼 서보잉 시스템에 관한 연구)

  • 송원경;이희영;변증남
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.763-768
    • /
    • 1999
  • The space variant imaging system which mimics the human beings visual system has some merits such as wide field-of-view, the low computational cost and the high accuracy in matching of correspondence points of stereo images. In this presentation, a visual servoing system based on the space variant imaging technique is proposed for the control of the rehabilitation robot arm. The position information of an object obtained by space variant imaging techniques is used for the visual servoing. According to the empirical data, the degree of correlation extracted by the space variant imaging technique is more accurate than that of the space invariant imaging technique.

  • PDF

Image-based visual servo with Industrial robot (산업용 로보트를 이용한 비쥬얼 서보)

  • Pyon, Young-Bum;Park, Chan-Eung;Lee, Kwae-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.299-301
    • /
    • 1994
  • Visual feedback has traditionally been used in robot manipulator control to a limited extent. However in varying environment, visual data is needed to control the manipulator to complete the desired task. In this paper we present a method of manipulator control scheme called image-based visual servo. In this scheme we use image data as feedback to control robot manipulator. And we also show the experimental results with an industrial robot manipulator.

  • PDF

A Visual Calibration Scheme for Off-Line Programming of SCARA Robots (스카라 로봇의 오프라인 프로그래밍을 위한 시각정보 보정기법)

  • Park, Chang-Kyoo;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.62-72
    • /
    • 1997
  • High flexibility and productivity using industrial robots are being achieved in manufacturing lines with off-line robot programmings. A good off-line programming system should have functions of robot modelling, trajectory planning, graphical teach-in, kinematic and dynamic simulations. Simulated results, however, can hardly be applied to on-line tasks until any calibration procedure is accompained. This paper proposes a visual calibration scheme in order to provide a calibration tool for our own off-line programming system of SCARA robots. The suggested scheme is based on the position-based visual servoings, and the perspective projection. The scheme requires only one camera as it uses saved kinematic data for three-dimensional visual calibration. Predicted images are generated and then compared with camera images for updating positions and orientations of objects. The scheme is simple and effective enough to be used in real time robot programming.

5 Axis Picomotor Control for Pixel matching in Holographic Data Storage (홀로그래픽 저장장치의 픽셀 매칭을 위한 5 축 피코모터 제어)

  • Lee Jae-Seung;Choi Jin-Young;Yang Hyun-Seok;Park Young-Pil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1099-1102
    • /
    • 2005
  • In this paper, a new visual servo method, which uses 5 axis picomotor to compensate the misalignment generated between a SLM and a CCD in a holographic storage device, was proposed and the effectiveness of it was proved by the experiment. In a holographic storage device, the data processing is done by the SLM and the CCD, and the shape of data is 2 dimensional binary patterns. Therefore, the exact image matching between the SLM and the CCD is very important, and the mismatching of it causes the errors in the data reconstruction. First, the brief introduction of a holographic data storage is given, then, BER concept which is errors caused by pixel mismatch between the SLM and the CCD is defined. Second, the geometric relation between 5 axis picomotor and the CCD movement is studied. Finally, the visual servo method using 5 axis picomotor to reduce the BER in a holographic storage device is proposed and experimented. From the experiment, we find that about 3% BER improvement is obtained by the proposed method.

  • PDF

Image-based Visual Servoing for Automatic Recharging of Mobile Robot (이동로봇의 자동충전을 위한 영상기반 비쥬얼 서보잉 방법)

  • Song, Ho-Bum;Cho, Jae-Seung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.664-670
    • /
    • 2007
  • This study deals with image-based visual servoing for automatic recharging of mobile robot. Because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using cameras, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is image-based visual servoing. Recently, image based visual servoing is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. In case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual servoing method that can reduce the curved trajectory of mobile robot in the cartesian space.