• Title/Summary/Keyword: 비정형 평면

Search Result 28, Processing Time 0.024 seconds

Development of 2.5D Photon Dose Calculation Algorithm (2.5D 광자선 선량계산 알고리즘 개발)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.103-114
    • /
    • 1999
  • In this study, as a preliminary study for developing a full 3D photon dose calculation algorithm, We developed 2.5D photon dose calculation algorithm by extending 2D calculation algorithm to allow non-coplanar configurations of photon beams. For this purpose, we defined the 3d patient coordinate system and the 3d beam coordinate system, which are appropriate to 3d treatment planning and dose calculation. and then, calculate a transformation matrix between them. For dose calculation, we extended 2d "Clarkson-Cunningham" model to 3d one, which can calculate wedge fields as well as regular and irregular fields on arbitrary plane. The simple Batho's power-law method was implemented as an inhomogeneity correction. We evaluated the accuracy of our dose model following procedures of AAPM TG#23; radiation treatment planning dosimetry verifications for 4MV of Varian Clinac-4. As results, PDDs (percent depth dose) of cubic fields, the accuracy of calculation are within 1% except buildup region, and $\pm$3% for irregular fields and wedge fields. And for 45$^{\circ}$ oblique incident beam, the deviations between measurements and calculations are within $\pm$4%. In the case of inhomogeneity correction, the calculation underestimate 7% at the lung/water boundary and overestimate 3% at the bone/water boundary. At the conclusions, we found out our model can predict dose with 5% accuracy at the general condition. we expect our model can be used as a tool for educational and research purpose.. purpose..

  • PDF

A Study on the Seismic Response of a Non-earthquake Resistant RC Frame Using Inelastic Dynamic Analyses (비선형 동적 해석을 이용한 비내진 상세 RC 골조의 지진거동 특성 분석)

  • Jeong, Seong-Hoon;Lee, Kwang-Ho;Lee, Soo-Kueon
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.381-388
    • /
    • 2010
  • In this study, characteristics of the seismic response of the non-earthquake resistant reinforced concrete (RC) frame were identified. The test building is designed to withstand only gravity loads and not in compliance with modern seismic codes. Smooth bars were utilized for the reinforcement. Members are provided with minimal amount of stirrups to withstand low levels of shear forces and the core concrete is virtually not confined. Columns are slender and more flexible than beams, and beam-column connections were built without stirrups. Through the modeling of an example RC frame, the feasibility of the fiber elementbased 3D nonlinear analysis method was investigated. Since the torsion is governed by the fundamental mode shape of the structure under dynamic loading, pushover analysis cannot predict torsional response accurately. Hence, dynamic response history analysis is a more appropriate analysis method to estimate the response of an asymmetric building. The latter method was shown to be accurate in representing global responses by the comparison of the analytical and experimental results. Analytical models without rigid links provided a good estimation of reduced stiffness and strength of the test structure due to bond-slip, by forming plastic hinges closer to the column ends. However, the absence of a proper model to represent the bond-slip poased the limitations on the current inelastic analysis schemes for the seismic analysis of buildings especially for those with round steel reinforcements. Thus, development of the appropriate bond-slip model is in need to achieve more accurate analysis.

Development of Graphic User Interface for the Analysis of Horizontally Two-dimensional Open Channel Flow (평면 2차원 흐름 해석을 위한 GUI 개발)

  • Kim, Tae Beom;Kim, Il Hwan;Han, Jong Hyeong;Oh, Jeong-hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.264-264
    • /
    • 2019
  • 개수로 흐름 해석을 위해 수치모형을 적용할 때 반드시 거쳐야 하는 과정이 격자망을 구성하는 일이다. 불규칙한 형상의 자연수로를 모의할 때 격자망 생성은 쉬운 일이 아니며, 따라서 가시적으로 격자망 생성을 돕고, 격자망의 수정도 용이한 도구가 요구된다. 따라서 본 연구에서는 수심적분된 흐름방정식을 지배방정식으로 하여 개수로 흐름 해석을 용이하게 하고자 그래픽 사용자 인터페이스(GUI)를 개발하였으며, 이를 소개하고자 한다. 격자망은 기본적으로 사각형과 삼각형 요소로 구성될 수 있으며, 유한차분모형 등에서는 정형사각형 격자망을, 유한요소모형에서는 비정형 사각형 및 삼각형 격자망 또는 혼합망을 생성시킬 수 있다. 이산점(scatter points)이나 절점(node points)을 생성하거나 기존의 자료를 불러들여 삼각망 또는 사각망을 형성시킬 수 있으며, 연속선(polylines)을 작성하여 형성된 폐다각형(polygones)을 이용하여 정규 또는 비정규의 삼각망 또는 사각망을 형성시킬 수 있다. 또한 두 점사이를 선형 또는 반원 형태로 편향 정도(biased value)를 설정하여 원하는 개수만큼 나눌 수 있도록 하여, 보다 효율적인 격자형성이 가능토록 하였다. 기존 상용 프로그램에서 작성된 격자를 불러들여 활용 가능하며, 백그라운드 이미지로 지형도나 위성사진을 띄어놓고 이미지 상에서 격자를 형성할 수도 있다. 기본적으로 마우스를 이용하여 화면의 이동, 확대 및 축소와 점, 선, 요소의 생성 및 선택이 가능하다. 본 프로그램은 Qt와 modern OpenGL을 바탕으로 제작되었으며, 마이크로소프트사의 windows 뿐만 아니라 Mac OS, Linux 버전의 설치 파일 작성이 가능하다.

  • PDF

Seismic Response Analysis of Twisted Buildings with Three Planar Shapes (세 가지 평면 형상에 따른 비틀림 비정형 빌딩구조물의 지진응답 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, a twisted shape structure with an elevation form favorable to the resistance of vibration caused by wind loads is selected from among the forms of high-rise buildings. The analytical model is a square, triangular, and hexagonal plane with a plane rotation angle of one degree from 0 to 3 degrees per each story. As a result of the analysis, as the twist angle increased, story drift ratio is increased. Responses with different eccentricity rates were shown by analytical models. Therefore planar shapes designed symmetrically to the horizontal axis of X and Y are considered advantageous for eccentricity and torsion deformation. In the case of the bending moment of the column, the response was amplified in the column supporting the base floor, the roof floor, the floor in which the cross-section of the vertical member changes, and the floor having the same number of nodes as the base floor. Finally, the axial force response of the column is determined to be absolutely affected by the gravity load compared to the lateral load.

A Study on the Relationship between Earthquake Damage and the Design Eccentricity of Building with Planar Irregularity (평면 비정형 건물의 설계편심과 지진 손상도의 상관관계에 관한 연구)

  • Lee, Kwang Ho;Jeong, Seong Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.237-243
    • /
    • 2013
  • In the Korean Building Code (KBC), the Design Eccentricity involves the torsional amplification factor (TAF), and the inherent and accidental eccentricities. When a structure of less than 6-stories and assigned to seismic design category C or D is designed using equivalent static analysis method, both KBC-2006 and KBC-2009 use the TAF but apply different calculation methods for the of design eccentricity. The design eccentricity in KBC-2006 is calculated by multiplying the sum of inherent eccentricity and accidental eccentricity at each level by a TAF but that in KBC-2009 is calculated by multiplying only the accidental eccentricity by a TAF. In this paper, the damage indices of a building with planar structural irregularity designed by different design eccentricities are compared and the relationship between the earthquake damage and design eccentricity of the building is evaluated. On the basis of this study, the increment of design eccentricity results in the decrement of final eccentricity and global damage index of structure. It is observed that design eccentricity in KBC-2006 reduces the vulnerability of torsional irregular building compared to design eccentricity in KBC-2009.

Seismic Response Control of Mid-Story Isolation System for Planar Irregular Structures (평면 비정형 구조물에 적용된 중간층 면진 시스템의 지진 응답 제어 성능 분석)

  • Park, Hyo-Sun;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • In this study, the seismic response is investigated by using a relatively low-rise building under torsion-prone conditions and three seismic loads with change of the location of the seismic isolation system. LRB (Lead Rubber Bearing) was used for the seismic isolator applied to the analytical model. Fixed model without seismic isolation system was set as a basic model and LB models using seismic isolation system were compared. The maximum story drift ratio and the maximum torsional angle were evaluated by using the position of the seismic layer as a variable. It was confirmed that the isolation device is effective for torsional control of planar irregular structures. Also, it was shown that the applicability of the mid-story seismic isolation system. Numerical analyses results presented that an isolator installed in the lower layer provided good control performance for the maximum story drift ratio and the maximum torsional angle simultaneously.

Analysis of Seismic Response by the Movement of the Plane Rotation Axis and the Core of Atypical Structures (비정형 구조물의 평면 회전축과 코어의 이동에 따른 지진응답분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.33-40
    • /
    • 2022
  • When the center of stiffness and the center of mass of the structure differ under the seismic load, torsion is caused by eccentricity. In this study, an analysis model was modeled in which the positions of the core and the plane rotation axis of a 60-story torsional atypical structure with a plane rotation angle of 1 degree per floor were different. The structural behavior of the analysis model was analyzed, and the earthquake response behavior of the structure was analyzed based on the time history analysis results. As a result, as the eccentricity of the structure increased, the eccentricity response was amplified in the high-rise part, and the bending and torsional behavior responses were complex in the low-order vibration mode. As a result of the analysis, the maximum displacement and story drift ratio increased due to the torsional behavior. The maximum story shear force and the story absolute maximum acceleration showed similarities for each analysis model according to the shape of the vibration mode of the analysis model.

Analytical Study on the Seismic Retrofit Method of Irregular Piloti Building Using Knee-Brace (Knee - Brace를 활용한 비정형 필로티 건물의 내진보강방안에 대한 해석적 연구)

  • Yoo, Suk-Hyung;Kim, Dal-Gee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.35-42
    • /
    • 2020
  • Torsional behavior due to the plane irregularities of the piloti building can cause excessive story drift in the torsionally outermost column, which can lead to shear failure of the column. As a seismic retrofit method that can control the torsional behavior of the piloti building, the expansion of RC wall, steel frame or steel brace may be used, but such methods may hinder the openness of the piloti floor. Therefore, in this study, linear dynamic analysis and nonlinear static analysis for piloti buildings retrofitted by knee brace were performed, and seismic performance evaluation and torsion control effect of knee brace were analyzed. The results showed that the shear force of the column increased when the piloti building retrofitted by knee brace, but it was effective in controlling the torsional deformation. In case of retrofit between knee brace and column by 30°, the shear force of the column increased less than that of 60°, and the lateral displacement of column was decreased in the order of □, ◯ and H in cross-section.

A Study on Spatial Structure Characteristics of Earthen Walled Fortresses (토성(土城)의 공간구조 특성 연구)

  • Lee, Sang-Seok;Jang, Mi-Ran
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.32 no.1
    • /
    • pp.74-82
    • /
    • 2014
  • The purposes of this study is to investigate spatial structure characteristics of earthen walled fortresses based on topography, which are locational and Plane morphology, Cross sections of earthworks. Target areas of this study are 37 earthen walled fortresses which are designated as cultural properties. This study is conducted with methodologies of literature review, field investigation, investigation on topography materials and relation analyses of topography&spatial structure. The results from study on spatial structure of earthen walled fortresses are as follows. First, Earthen walled fortresses on flat topography were adjacent to water systems like rivers or streams. Plane morphology showed regular shapes. The cross section morphology presented trapezoid the most with earthworks of which outer and inner walls were built. Second, More than 70% of earthen walled fortresses on hilly topography had water system within close range of approximately 1.5km. Plane morphology was mainly with more than 73% of irregular types. Cross sections of earthworks were of morphology with more than 86% of bordered type and another type leaning against existing topography like mountains. Third, 59% of earthen walled fortresses in mountain areas had water system within their close range, which indicated that they depended on external water system less than those with hilly topography. Plane morphology was mainly with more than 67% of irregular types. Cross sections of earthworks were of monoslope method with more than 94% of bordered type and another type leaning against mountains.