• 제목/요약/키워드: 비정질 탄소 박막

Search Result 65, Processing Time 0.021 seconds

CFUBM Sputtering법으로 증착시킨 티타늄이 첨가된 비정질 탄소 박막의 기계적 특성 연구 (Mechanical Properties of Ti doped Amorphous Carbon Films prepared by CFUBM Sputtering Method)

  • 조형준;박용섭;김형진;최원석;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.706-710
    • /
    • 2007
  • Ti-containing amorphous carbon (a-C:Ti) films shows attractive mechanical properties such as low friction coefficient, good adhesion to various substrate and high wear resistance. The incorporation of titanium in a-C films is able to improve the electrical conductivity, friction coefficient and adhesion to various substrates. In this study, a-C:Ti films were depositied on Si wafer by closed-field unbalanced magnetron (CFUBM) sputtering system composed two targets of carbon and titanium. The tribological properties of a-C:Ti films were investigated with the increase of DC bias voltage from 0 V to - 200 V. The hardness and elastic modulus of films increase with the increase of DC bias voltage and the maximum hardness shows 21 GPa. Also, the coefficient of friction exhibites as low as 0.07 in the ambient. In the result, the a-C:Ti film obtained by CFUBM sputtering method improved the tribological properties with the increase of DC bias volatage.

비대칭 마그네트론 스퍼터링법에 의한 비정질 질화탄소 박막의 합성 및 윤활 특성 (Synthesis and Lubricant Properties of Nitrogen doped Amorphous Carbon (a-C:N) Thin Films by Closed-field unbalanced Magnetron Sputtering Method)

  • 박용섭;조형준;최원석;홍병유
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.701-705
    • /
    • 2007
  • The incorporation of N in a-C film is able to improve the friction coefficient and the adhesion to various substrates. In this study, a-C:N films were deposited on Si and steel substrates by closed-field unbalanced magnetron (CFUBM) sputtering system in $Ar/N_2$ plasma. The lubricant characteristics was investigated for a-C:N deposited with total working pressure from 4 to 7 mTorr. We obtained high hardness up to 24GPa, friction coefficient lower than 0.1 and the smooth surface of having the extremely low roughness (0.16 nm). The physcial properties of a-C:N thin film are related to the increase of cross-linked $sp^2$ bonding clusters in the film. However, the decrease of hardness, elastic modulus and the increase of surface roughness, friction coefficient with the increase of $N_2$ partial pressrue might be due to the effect of energetic ions as a result of the increase of ion bombardment with the increase of ion density in the plasma.

비대칭 마그네트론 스퍼터링으로 합성된 비정질 탄소박막의 물리적, 구조적 특성에서 타겟 파워 밀도의 영향 (The effect of target power density on physical and structural properties of amorphous carbon films prepared by CFUBM sputtering)

  • 이재희;박용섭;박재욱;홍병유
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.366-366
    • /
    • 2008
  • Amorphous carbon (a-C) is an interesting materials and its characteristics can be varied by tuning it $sp^3$ fractions. The $sp^3$ fraction in a-C films depends on the kinetic energy of the deposited carbon ions. In this work, a-C films was synthesized on Si(100) and glass substrates at room temperature by closed-field unbalanced magnetron (CFUBM) sputtering with the increase of graphite target power density. The structural and physical properties of films were investigated by using Raman spectroscopy, X-ray photoelectron spectrometer (XPS), nano- indentation, atomic force microscope (AFM) and contact-angle measurement. We obtained the good tribological properties, such as high hardness up to 26 GPa., friction coefficient lower than 0.1 and the smooth surface (rms roughness: 0.12 nm). The increase of the physical properties with the increase of target power density are related to the increase of nano-clusters in the carbon network. Also, these results might be due to the increase of the subplantation and resputtering by the increase of ions density in the plasma.

  • PDF

비대칭 마그네트론 스퍼터로 증착된 비정질 탄소박막의 트라이볼로지 특성에서 CrC 삽입층 효과에 대한 연구 (CrC Interlayer Effect on Tribological Properties of Amorphous Carbon Deposited by UBMS Method)

  • 김필중;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제31권7호
    • /
    • pp.475-480
    • /
    • 2018
  • We investigated the tribological properties of amorphous carbon (a-C) films deposited with CrC interlayers of various thicknesses as the adhesive layer. A-C and CrC thin films were deposited using the unbalanced magnetron (UBM) sputtering method with graphite and chromium as the targets. CrC films as the interlayer were fabricated under a-C films, and various structural, surface, and tribological properties of a-C films deposited with various CrC interlayer thicknesses were investigated. With various CrC interlayer thicknesses under a-C films, the tribological properties of CrC/a-C films were improved; the increased film thickness exhibited a maximum high hardness of over 27.5 GPa, high elastic modulus of over 242 GPa, critical load of 31 N, residual stress of 1.85 GPa, and a smooth surface below 0.09 nm at the condition of 30-nm CrC thickness.

플라즈마 질화처리한 사출금형소재의 비정질 탄소계 박막 증착에 따른 기계적 특성 향상 효과 (The effect of mechanical properties of carbon-based thin film on plasma nitrided injection mold steel )

  • 김혜민;김대욱
    • 한국표면공학회지
    • /
    • 제56권5호
    • /
    • pp.328-334
    • /
    • 2023
  • The carbon-based films have various properties, which have been widely applied in industrial application. However, it has critical drawback for poor adhesion between films and metal substrate. In the present work, we have deposited carbon-based films on injection mold steel by plasma assisted chemical vapor deposition (PACVD). In order to improve adhesion, prior to film deposition, the substrate was nitriding-treated using PACVD. And its effect on the adhesion was investigated. Due to the pre-nitriding, the amorphous carbon nitride (a-CN:H) films presented 10 times higher adhesion (34.9 N) than that of un-nitirided. In addition, a friction coefficient was decreased from 0.29 to 0.15 for the amorphous carbon (a-C:H) due to improved adhesion. The obtained results demonstrated that pre-nitriding considerably improved the adhesion, and the relationship among adhesion, hardness, and surface roughness was discussed in detail.