Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.238-240
/
2000
침입탐지시스템은 침입탐지 기법에 따라 크게 오용탐지시스템과 비정상행위탐지시스템으로 나뉜다. 비정상 행위 탐지시스템은 정상사용행위를 모델링한 후 현재 관찰중인 행위가 정상에서 벗어나는지를 검사한다. 시스템 사용시 발생하는 각 이벤트는 동시에 여러 가지 정보를 담고있으므로 여러 각도에서 모델링될 수 있다. 따라서 여러 결과를 종합해서 판정의 안정성을 높을 수 있다. 본 논문에서는 이벤트의 시스템호출에 평가결과와 BSM감사정보 중 시스템호출관련 정보, 파일 접근관련 정보, 이 둘을 모두 고려한 정보를 통합한 평가결과를 투표방식으로 결합하여 판정하는 기법을 제안하였다. 실험결과 두 모델을 별도로 적용하는 경우보다 나아진 판정성능을 보여주었다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.511-513
/
2002
본 논문은 악성 스크립트를 탐지하는 새로운 방법을 제안한다. 정보검색 기법을 이용하여 정상 스크립트들을 기능별로 구분하여 정상 행위를 정의함으로써, 정상 행위에서 벗어나는 경우에 악성이라고 판정한다. 소스 기반의 빠른 검색이 가능하며, 실시간 모니터링을 통한 비정상 스크립트의 탐지가 가능하다. 또한 새로운 악성 스크립트가 생성되는 경우에도 탐지가 가능하다는 장점을 가지고 있다.
The Transactions of the Korea Information Processing Society
/
v.7
no.8
/
pp.2411-2420
/
2000
Far detecting variaus camputer intrusians effectively, many researches have develaped the misuse based intrusian detectian systems. Recently, warks related ta anamaly detectian, which have impraved the drawback .of misuse detectian technique, have been under focus. In this paper, a new clustering algarithm based an support constraint far generating user's narmal activity patterns in the anamaly detectian can praposed. It can grant a user's activity .observed recently ta mare weight than that .observed in the past. In order that a user's anamaly can be analyzed in variaus angles, a user's activity is classified by many measures, and far each .of them user's narmal patterns can be generated. by using the proposed algarithm. As a result, using generated narmal patterns, user's anamaly can be detected easily and effectively.
Proceedings of the Korean Information Science Society Conference
/
2001.04a
/
pp.766-768
/
2001
정보통신의 질적 양적 팽창과 더불어 컴퓨터 시스템에 대한 침입 또한 증가하고 있다. 침입탐지시스템은 이를 해결하기 위한 대표적인 수단으로, 최근 관련된 연구의 방향이 오용탐지 기법에서 비정상 행위탐지 기법으로 옮겨가고 있는 상황이다. HMM(Hiddem Markov Model)은 비정상행위탐지 기법에 사용되어 다양한 척도(measure)에 대한 정상행위를 효과적으로 모델링할 수 있는 방법이다. 다양한 척도의 결과값들로부터 침입을 판정하는 방법에 대한 연구는 미흡하다. 본 논문에서는 SOM(self organizing map)을 통해 축약된 데이터를 HMM으로 모델링한 비정상행위기반 침입탐지 시스템의 성능을 향상시키기 위해 퍼지 침입판정 방법을 제시한다. 실험결과 척도에 따른 결과들의 기계적 결합보다 향상된 결과를 얻었으며, 퍼지 관련 파라메터의 개선을 통해 더욱 좋은 효과를 기대할 수 있었다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.12
no.5
/
pp.63-73
/
2002
Recently, intrusions into a computer have been increased rapidly and also various intrusion methods have been developed. As a result. many researches have been performed to detect the activities of intruders effectively In this paper, a new association mining algorithm for anomaly network intrusion detection is proposed. For this purpose, the proposed algorithm is composed of two different phases: intra-packet association and inter-packet association. The performance of the proposed anomaly detection system is evaluated based on several experiment according to various system parameters in order to identify their practical ranges for maximizing its detection rate. As a result, an anomaly can be detected effectively.
Due to the advance of computer and communication technology, intrusions or crimes using a computer have been increased rapidly while tremendous information has been provided to users conveniently Specially, for the security of a database which stores important information such as the private information of a customer or the secret information of a company, several basic suity methods of a database management system itself or conventional misuse detection methods have been used. However, a problem caused by abusing the authority of an internal user such as the drain of secret information is more serious than the breakdown of a system by an external intruder. Therefore, in order to maintain the sorority of a database effectively, an anomaly defection technique is necessary. This paper proposes a method that generates the normal behavior profile of a user from the database log of the user based on an association mining method. For this purpose, the Information of a database log is structured by a semantically organized pattern tree. Consequently, an online transaction of a user is compared with the profile of the user, so that any anomaly can be effectively detected.
Proceedings of the Korea Information Processing Society Conference
/
2001.10b
/
pp.1001-1004
/
2001
현재 네트워크 기반의 침입 탐지는 대부분 오용 탐지 기법을 사용한다. 하지만 이는 알려지지 않은 침입을 탐지하는 능력이 떨어지는 기법으로서 이를 보완할 수 있는 비정상행위 탐지 기법을 찾는 것이 필요하다. 따라서 수집된 감사 자료로부터 정상행위를 프로파일링하고 침입임을 판정하는데 통계적인 기법을 사용하였다. 수집된 로그로부터 통계적인 방법으로 정상행위를 프로파일링하기 위해 우선 패킷으로부터 수집되는 감사 자료의 통계적인 특성을 대변하는 분포와 파라미터를 추정하고 카이스퀘어 검정법을 사용하여, 감사 자료가 가설하는 이론적인 분포의 특성을 가지고 있다고 판정되면 이를 정상행위의 기준으로 삼는다. 이후에 수집되는 감사자료를 감시하기 위해 추정된 분포와 파라미터를 따르고 있는지의 여부를 Kolmogorov-Smirnov 적합도 검정을 이용하여 판별하고, 이를 벗어나는 경우 침입으로 판정할 수 있도록 한다.
정보통신 구조의 확산과 함께 전산시스템에 대한 침입과 피해가 증가되고 있으며 침입탐지 시스템에 대한 관심과 연구가 늘어나고 있다. 본 논문에서는 은닉 마르코프 모델(HMM)을 이용하여 사용자의 정상행위에서 생성된 이벤트ID 정보를 모델링한 후 사용자의 비정상행위를 탐지하는 침입탐지 시스템을 제안한다. 전처리를 거친 이벤트ID열은 전방향-역방향 절차와 Baum-Welch 재추정식을 이용하여 정상행위로 구축된다. 판정은 전방향 절차를 이용해서 판정하려는 열이 정상행위로부터 생성되었을 확률을 계산하며, 이 값을 임계값과 비교함으로써 수행된다. 실험을 통해 침입탐지를 위한 최적의 HMM 매개변수를 결정하고 사용자 구분이 없는 단일모델링, 사용자별 모델링, 사용자 그룹별 모델링 방식을 비교하여 정상행위 모델링 성능을 평가하였다. 실험결과 제안한 시스템이 발생한 침입을 적절히 탐지함을 확인할 수 있었지만, 신뢰도 높은 침입탐지 시스템의 구축을 위해서는 보다 정교한 모델의 클러스터링이 필요함을 알 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2001.04a
/
pp.769-771
/
2001
침입의 궁극적 목표는 루트 권한의 획득이라고 할 수 있는데 최근 유행하고 있는 버퍼플로우(Buffer Over flow)등이 대표적이다. 최근 날로 다양화되는 이런 침입방법들에 대응하기 위해 비정상행위 탐지기법 연구가 활발한데 대표적인 방법으로는 통계적 기법과 전문가시스템, 신경망 등을 들 수 있다. 본 논문에서 제안하는 침입탐지시스템은 권한 이동 관련 이벤트의 추출 기법을 이용하여 Solaris BSM 감사 기록에서 추출된 정보 이벤트들을 수집한 후 은닉 마르코프 모델(HMM)로 모델링하여 정상행위 모델들을 만든다. 추론 및 판정시에는 이미 만들어진 정상행위 모델을 사용하여 새로 입력된 사용자들의 시퀀스를 비교 평가하고, 이를 바탕으로 정상 권한이동과 침입시의 권한이동의 차이를 비교하여 침입여부를 판정한다. 실험결과 HMM만을 사용한 기존 시스템에 비해 유용함을 알 수 있었다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.10
no.4
/
pp.59-71
/
2000
Due to the advance of computer and communication technology, intrusions or crimes using a computer have been increased rapidly while various information has been provided to users conveniently. As a results, many studies are necessary to detect the activities of intruders effectively. In this paper, a new association algorithm for the anomaly detection model is proposed in the process of generating user\`s normal patterns. It is that more recently observed behavior get more affection on the process of data mining. In addition, by clustering generated normal patterns for each use or a group of similar users, it is possible to identify the usual frequency of programs or command usage for each user or a group of uses. The performance of the proposed anomaly detection system has been tested on various system Parameters in order to identify their practical ranges for maximizing its detection rate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.