• Title/Summary/Keyword: 비정상 진동

Search Result 294, Processing Time 0.027 seconds

Voice Change Associated with Swallowing Disorder Caused by a Stroke After Neuromuscular Electrical Stimulation (뇌졸중으로 인한 삼킴장애 환자의 경부근육전기자극치료에 따른 음성 변화)

  • Byeon, Hae-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1665-1671
    • /
    • 2012
  • The purpose of this study was to look into changes in voice using acoustic analysis during the process of neuromuscular electrical stimulation targeting dysphagia treatment. Fifteen man with dysphagia caused by stroke was treated neuromuscular electrical stimulation for two months and intensity of voice, $F_0$, Jitter, Shimmer, NNE were measured. The results of this study that improvement in functions of dysphagia and Jitter, Shimmer were stabilized. But there was not significantly changes of $F_0$. NNE was improved after the intervention, but still showed abnormal levels. This result suggests a possibility of effects that Neuromuscular electrical stimulation has on stabilization of Jitter, Shimmer and intensity of voice.

Earthquake-resistance Analysis of Piles Using Dynamic Winkler Foundation Model (동적 Winkler 보 모델을 이용한 말뚝의 내진해석)

  • 장재후;유지형;정상섬
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.39-49
    • /
    • 2002
  • This paper describes a numerical method for pile foundation subjected to earthquake loading using dynamic Winkler foundation model. To verify the numerical method, shaking table tests were carried out. In shaking table tests, accelerations and pile bending moments were measured for single pile and pile groups with a spacing-to-diameter ratio of 2.5 under fixed input base acceleration. In numerical analysis, the input base and free field accelerations measured from shaking table tests were used as input base motions. Based on the results obtained, free field acceleration was magnified relative to input base acceleration, whereas pile head accelerations reduced relatively to free field acceleration for soil-pile interaction. Measured and predicted bending moments for both cases have maximum value within the distance 10cm(4d) from the pile top. However, there are some differences between the results of numerical analysis and shake table test below 10cm(4d) from the pile top.

Implementation of the two-degree-of freedom PID Position Controller for Linear Motor Drive with Easy Gain Adjustment (이득 설계가 간단한 선형전동기 2자유도 PID 위치제어기 구현)

  • Ha, Hong-Gon;Lee, Chang-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Recently, the application of the linear machine for industrial field is remarkably increased, especially for the gantry machine, machine tool system and CNC. However a linear meter remains the vibrational characteristic itself therefore, In these application fields, high position control performance is essentially required in both the steady and the transient states. In this paper, the design method for a position control is proposed by using the two-degree-of freedom PID controller. This method has great features for the linear machine drives such as no over-shoot phenomena and single gain tuning strategy. By comparison with conventional PID controller, the improvement of performance of a linear motor control system using two degrees of freedom controller are discussed. Through the simulation results, the usefulness of the proposed algorithm is proved. With the simulation results, it was made clear that the introduction of two degrees of freedom controller designed by the proposed method not only improves the over shoot and starting characteristic of response but also removes the undesirable characteristic variation.

  • PDF

Adaptive Chaos Control of Time-Varying Permanent-Magnet Synchronous Motors (시변 영구자석형 동기 전동기의 적응형 카오스 제어)

  • Jeong, Sang-Chul;Cho, Hyun-Cheol;Lee, Hyung-Ki
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.9 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • Chaotic behavior in motor systems is undesired dynamics in real-time implementation since the speed is oscillated in a wide range and the torque is changed by a random manner. We present an adaptive control approach for time-varying permanent-magnet synchronous motors (PMSM) with chaotic phenomenon. We consider that its parameters are changed randomly within certain bounds. First, a nonlinear system model of a PMSM is transformed to derive a nominal linear control strategy. Then, an auxiliary control for compensating real-time control error occurred by system perturbation due to parameter change is designed by using Lyapunov stability theory. Numerical simulation is accomplished for evaluating its efficiency and reliability comparing with the traditional control method. Additionally, we test our control method in real-time motor experiment including a PSoC based drive system to demonstrate its practical applicability.

  • PDF

Influences of the Defective Piezo-Elements of a Medical Ultrasonic Probe on Transient Acoustic Fields and B-Mode Images (의료용 초음파프로브의 압전소자 결함이 과도음장과 B-모드 영상에 미치는 영향)

  • Choi, Kwang-Yoon;Ha, Kang-Lyeol;Kim, Moo-Joon;Kim, Jung-Soon;Yang, Jeong-Hwa;Kang, Gwan-Suk;Choi, Min-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.8
    • /
    • pp.476-482
    • /
    • 2010
  • The ultrasonic transient fields and B-mode images of a point target which were simulated for a medical ultrasonic probe with a few defective piezo-elements were compared with those for a normal probe. The present study considered a 3.5 MHz linear array probe whose acoustic beam was formed by the 64 active elements of total 192 elements. The results showed that the maximum amplitude and -3 dB width of the acoustic fields by main-lobes decreased linearly as the defective element number increased from one to four. However, the depths of foci remained almost unchanged, and the pressure differences between main-lobes and side-lobes tended to decrease due to rise in pressures in side-lobes. Such changes in ultrasonic fields affected the B-mode images of point targets. So the artifacts were formed in the right and left side of the target, and the lateral spatial resolutions were decreased while the axial resolution was almost the same.

Thickness assessment of tunnel concrete lining using wavelet transform (웨이블릿 변환을 이용한 터널 콘크리트 라이닝의 두께 검사법)

  • Lee, In-Mo;Cheon, Il-Soo;Hong, Eun-Soo;Lee, Joo-Gong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 2003
  • To investigate the safety and stability of a concrete lining, numerous studies have been conducted over the years and several methods have been developed. Most signal processing techniques of NDT have been based on Fourier analysis. However, the application of Fourier analysis to analyze recorded vibrational signal shows results in the frequency domain only, and it is not enough to analyze transient waves precisely. In this study, Wavelet theory was employed for the analysis of non-stationary wave induced by mechanical impact on tunnel concrete lining. The Wavelet transform of transient signals provides a method for mapping the frequency spectrum as a function of time. To verify the availability of Wavelet transform as a time-frequency analysis tool, model experiments have been conducted and the thickness of the concrete lining was estimated based on the proposed theory. From this study, it was found that the contour map by Wavelet transform provides more distinct results than the power spectrum by Fourier transform and it was also found that Wavelet transform was also an effective tool for the analysis of dispersive waves in tunnel concrete linings.

  • PDF

An experimental study on reefing effect on aerodynamics characteristics of cruciform parachute (십자형 낙하산의 Reefing 효과에 따른 공력특성에 관한 실험연구)

  • Lee, Chang-Gu;Kim, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.628-633
    • /
    • 2008
  • Cruciform parachute has advantage in manufacture and expanse compare with circular parachute. But it has disadvantage in stability. Wind tunnel test were conducted to investigate the effects of reefing-line on the cruciform parachutes with the purpose of finding aerodynamics characteristics of the parachute such as drag coefficient, normal force coefficient. Aerodynamics characteristics are measured accurately with 6-components pyramidal balance and load cells which were installed in the fixed-body. Four different models were tested and the test results were compared with each other. The aerodynamics characteristics were changed with reefing-line length. Separation edge was developed due to reefing-line also it made increasing of the stability. The cruciform parachute which improve stability is supposed to be used in variety purpose.

A Study on Simulation of Dam-break Wave Using Two-dimensional Finite Volume Model (2차원 유한체적모형을 이용한 댐 붕괴파 모의에 관한 연구)

  • Jeong, Woo-Chang;Park, Young-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.249-262
    • /
    • 2011
  • In this study, in order to reduce the numerical oscillation due to the unbalance between source and flux terms as the HLLC scheme is applied to the flow analysis on the irregular bed topography, a unstructured finite volume model based on the well-balanced HLLC scheme and the shallow water equations is developed and applied to problems of dam-break waves. The well-balanced HLLC scheme considers directly the gradient of bed topography as the flux terms is calculated. This scheme provides the good numerical balance between the source and flux terms in the case of the application to the steady-state transcritical flow. To verify the numerical model developed in this study, it is applied to three cases of hydraulic model experiments and a field case study of Mapasset dam failure (France). As a result of the verification, the predicted numerical results agree relatively well with available laboratory and field measurements. The model provides slightly more accurate results compared with the existing models.

Separation control using multi-array/multi-location synthetic jet (Multi-array/multi-location synthetic jet을 이용한 박리 제어)

  • 김상훈;김종암
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.8-15
    • /
    • 2006
  • Separation control has been performed using the multi-array/multi-location synthetic jet on NACA23012 at high angle of attack. The flow control using single synthetic jet shows that stall characteristics can be substantially improved with delayed separation point. Theses results show the characteristic of unsteady flow of single synthetic jet. Beside, we researched on multi-array synthetic jet to obtain applicable synthetic jet velocity. Multi-location synthetic jet is proposed to eliminate small vortex on suction surface of airfoil. With the results, we concluded that the flow around airfoil is stable by high frequency synthetic jet with elimination of small vortex and confirmation of stable flow. Moreover, performance of multi-array/multi-location synthetic jet can be improved by changing phase angle of multi-location synthetic jet.

Dynamic Stability of a Flexible Cylinder Subjected to Inviscid Flow in a Coaxial Cylindrical Duct Based on Spectral Method (스펙트럼 배치방법에 의한 원형도관내의 비점성유동장에 놓인 유연성 실린더의 안정성 분석)

  • Sim, Woo-Gun;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.212-224
    • /
    • 1994
  • A numerical method has been developed for studying the dynamics of a flexible cylinder in a coaxial cylindrical duct, immersed in inviscid flow. The unsteady inviscid fluid-dynamic force acting on the oscillating cylinder has been estimated more rigorously by means of a spectral collocation method without simplification of governing equations. This numerical approach is applicable to the system haying wider annular gap and/or shorter length of cylinder as compared to existing potential theory. The governing equation of the unsteady flow was obtained from Laplace equation. The equation of cylinder motion coupled with the fluid motion was discretized by Galerkin's method, from which the dynamic behaviour of the system has been evaluated. The effect of the length of the cylinder and the annular gap on the critical flour velocity, where the system loses stability by buckling, was investigated. To validate the numerical method, the potential flow theory developed by Hobson based on thin film approximation has been improved. Typical results of the present numerical theory on the dynamics and stability of the system are compared with those of available existing theory and the present approximate results. Good agreement was found between the results. It was also found that a nondimensional critical flow velocity becomes larger as increasing the annular gap and decreasing the length of cylinder.

  • PDF