• Title/Summary/Keyword: 비정상 열해석

Search Result 158, Processing Time 0.023 seconds

EMD based hybrid models to forecast the KOSPI (코스피 예측을 위한 EMD를 이용한 혼합 모형)

  • Kim, Hyowon;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.3
    • /
    • pp.525-537
    • /
    • 2016
  • The paper considers a hybrid model to analyze and forecast time series data based on an empirical mode decomposition (EMD) that accommodates complex characteristics of time series such as nonstationarity and nonlinearity. We aggregate IMFs using the concept of cumulative energy to improve the interpretability of intrinsic mode functions (IMFs) from EMD. We forecast aggregated IMFs and residue with a hybrid model that combines the ARIMA model and an exponential smoothing method (ETS). The proposed method is applied to forecast KOSPI time series and is compared to traditional forecast models. Aggregated IMFs and residue provide a convenience to interpret the short, medium and long term dynamics of the KOSPI. It is also observed that the hybrid model with ARIMA and ETS is superior to traditional and other types of hybrid models.

1- Dimensional Transient Radiative Heat Transfer Using Finite Volume Method with 2-Order Upwind Scheme and QUICK Scheme (1차원 비정상상해 복사열전달 해석을 위한 2차 상류스킴 및 QUICK 스킴의 유한체적복사해법 적용 연구)

  • Lee Gun-Ho;Kim Man-Young;Byun Do-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.201-207
    • /
    • 2006
  • Transient radiative heat transfer is analyzed in a one-dimensional slab using finite volume method (FVM). In this study, the step, $2^{nd}$ order upwind, and QUICK schemes are used for incident diffuse radiation and collimated beam, respectively. The results fer diffuse radiation show that all schemes applied in this study give good agreements with available published results. In case of collimated beam however, the results show deviations from the analytical solutions. To successfully describe the propagations of collimated beam shock capturing schemes such as TVD scheme are need to be developed.

A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer (초음속 2차원 2단 혼합층에서 중간층의 역할)

  • Kim, Dongmin;Baek, Seungwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The basic flow configuration is composed of a plane, double shear layer where relatively thin mid gas layer is sandwiched between air and fuel stream. The present study describes numerical investigations concerning the combustion enhancement according to a variation of mid layer thickness. In this case, the effect of heat release in turbulent mixing layers is important. For the numerical solution, a fully conservative unsteady $2^{nd}$ order time accurate sub-iteration method and $2^{nd}$ order TVD scheme are used with the finite volume method including k-${\omega}$ SST model. The results consists of three categories; single shear layer consists of fuel and air, inert gas sandwiched between fuel and air, cold fuel gas sandwiched between fuel and air. The numerical calculations has been carried out in case of 1, 2, 4 mm of mid layer thickness. The height of total gas stream is 4 cm. The combustion region is broadened in case of inert gas layer of 2, 4 mm thickness and cold fuel layer of 4 mm thickness compared with single shear layer.

Thermal Signature Characteristics of Clothed Human Considering Thermoregulation Effects (체온 조절 작용을 고려한 의복 착용 시의 인체 열상신호 특성 분석)

  • Chang, Injoong;Bae, Ji-Yeul;Lee, Namkyu;Kwak, Hwykuen;Cho, Hyung Hee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • Survivability of soldiers has been greatly threatened by the development of thermal observation device(TOD). Therefore, infrared, especially thermal, stealth technology is applied to combat suit to avoid detection from TOD. In this study, prior to the thermal camouflage performance evaluation of combat suit, thermal signature characteristic from clothed the human body was analyzed considering the realistic condition for human surface temperature compared to that from unclothed human body. To get the realistic surface temperature distribution of human, thermoregulation and multi-layer skin structure model is applied to the human model. Based on temperature distribution, surface diffuse radiance in thermal range is calculated and by assuming the background conditions, contrast radiance intensity(CRI) characteristic of human body is analyzed. By wearing clothing, the CRI between background and human body became reduced in low emissive background but in high emissive background, the contrast is much more prominent. Therefore, this issue should be considered in design process of thermal camouflage combat suit.

Design and Thermal Analysis of Focal Plane Assembly Cooling Unit of Earth Observation Camera (저궤도 지구관측위성 주탑재체 냉각유닛 설계와 열해석)

  • Seo, Joung-Ki;Cho, Hee-Ken;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin;Kang, Seok-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.580-585
    • /
    • 2009
  • Thermal analysis and design of FPA(Focal Plane Assembly)-CU(Cooling Unit) for Earth observation camera is performed. FPA-CU is the first cooling device for a spacecraft which is designed and manufactured by its own technology in Korea. FPA-CU has a special feature, TBM(Thermal Buffer Mass) which is discriminated from typical cooling devices using heat pipes and radiator. TBM can be regarded as a thermal energy reservoir and it shows thermally transient characteristics, which make it difficult to design the size and shape of TBM. In current study, a method to determine the volume and the size of TBM is proposed and validated. The transient thermal analysis for FPA-CU for 5 operational scenarios is performed and validates the final design of FPA-CU (Radiator,TBM, Heat pipe I/F). In case of an abnormal operation of a heat pipe among three radiator heat pipes, the temperature of FPA can be increased $3{\sim}4^{\circ}C$ according to the numerical simulation.

A Numerical Study on the Natural Convection from a Square Beam with a Horizontal Adiabatic Plate (수평단열판에 부착된 등온사각비임에서의 자연대류 열전달에 관학 수치해석)

  • Bae, Sok-Tae;Park, Jae-Lim;Kwon, Sun-Sok
    • Solar Energy
    • /
    • v.10 no.1
    • /
    • pp.22-30
    • /
    • 1990
  • Steady laminar natural convection heat transfer from a square beam with a horizontal adiabatic plate has been studied numerically for various Grashof numbers and beam shapes. The heat transfer from a square beam increases as the dimensionless beam width W / L decreases. The mean Nusselt number of the upper surface is minimum at W / L = 1.0, maximum at W / L = 0.25 and that of the side surface is minimum at W / L = 0.25, maximum at W / L = 1.0. The increases of the total mean Nusselt number with increasing Grashof number is dominated by the beam width.

  • PDF

Numerical Analysis of Natural Convection in Inclined Flat Plate Enclosures (경사진 평판형 밀폐 공간에서의 자연 대류 현상의 수치 해석)

  • Kim, Yong Hyun;Koh, Hak Kyun;Noh, Sang Ha
    • Journal of Biosystems Engineering
    • /
    • v.10 no.1
    • /
    • pp.24-38
    • /
    • 1985
  • 경사진 밀폐 공간에서 마주 보는 두 벽면의 온도 차로 인하여 발생되는 자연 대류 현상은 여러 공학 분야에서 볼 수 있는 중요한 열전달 현상으로서, 최근 들어 평판형 태양열 집열기를 설계하려는 사람들에게 많은 관심의 대상이 되고 있다. 평판형 태양열 집열기의 경우 덮개판으로 부터의 대류 열손실을 감소시킴으로서 집열 효율을 높일 수 있을 뿐만 아니라 사용목적에 따라 소형 집열기를 제작할 수 있어 경제적으로 유리하게 될 것이다. 밀폐된 공간에서 최초에 정지 상태에 있는 얇은 유체층을 하부에서 가열시켜 주면 열팽창 현상이 일어나고, 이것에 의한 부력이 점도나 열전도도 등의 안정화 요인을 극복할 수 있을 정도로 커지면 System이 불안정하게 되어 자연 대류 현상이 수반되며 이 때문에 열전달율이 급격히 증가하게 된다. 이러한 현상의 지배 방정식은 연립 비선형 편미분 방정식으로 특수한 경계 조건외에는 일반적으로 해석적 해를 구하기가 어렵기 때문에 실험적 연구가 많이 실시되어 왔고 이들 결과의 대부분은 전반적인 열전달 특성치만을 구하는데 집중되어 왔다. 본 연구에서는 수치 해석법의 하나인 유한 차분법을 도입하여 이차원으로 가정한 경사진 평판형 밀폐 공간에서의 자연 대류 현상의 지배 방정식을 유한 차분화시켜, $$2.74{\times}10^3\leq_-Gr\leq_-2.0{\times}10^6$$, Pr=0.73, $$15^{\circ}\leq_-a\leq_-150^{\circ}$$, 종횡비는 1, 2, 3, 5, 9에 대하여 정상 상태에서의 해를 구하면서 수치적으로 실험하였다. 본 연구에서 얻어진 결론을 요약하면 다음과 같다. (1) 해석적으로 구하기 어려운 경사진 밀폐 공간에서 자연대류현상의 지배 방정식을 유한 차분법으로 해결할 수 있으며, 대류항과 확산항을 따로 고려한 유한차분법이 효과적임을 확인하였다. (2) 저온과 고온 벽면에서의 온도를 각각 균일하게 놓고 단변으로 이루어진 벽면은 완전히 절연되어 있는 경우에 대하여 수치해를 구한결과, 이전의 해석적 및 실험적 결과와 일치하였으며, 시간의 경과에 따른 온도 및 유선의 변화를 현상학적으로 관찰할 수 있었다. (3) 평균 열전달 계수에 미치는 경사각의 효과를 살펴본 결과 종횡비가 1 인 경우 경사각이 $45^{\circ}$에서, 종횡비가 2, 3, 5, 9인 경우 경사각이 $60^{\circ}$에서 각각 평균 열전달 계수 최대치가 나타났다. (4) Ra수(Rayleigh number) 가 증가될수록, 경사각에 상관없이 평균 열전달 계수도 증가되었다. 한편 Ra수 및 경사각의 변화에 따라 종횡비가 증가될수록 평균 열전달 계수는 경사각이 $90^{\circ}$인 경우를 제외하고는 감소됨을 볼 수 있었다. 경사각이 $90^{\circ}$인 경우, 평균 열전달 계수는 종횡비가 2 인 곳에서 최대치를 얻을 수 있었으며, 종횡비가 계속 증가될수록 평균 열전달 계수는 점차 감소되어짐을 볼 수 있었다.

  • PDF

Estimation of Fire Dynamics Properties for Charring Material Using a Genetic Algorithm (유전 알고리즘을 이용한 탄화 재료의 화재 물성치 추정)

  • Chang, Hee-Chul;Park, Won-Hee;Lee, Duck-Hee;Jung, Woo-Sung;Son, Bong-Sei;Kim, Tae-Kuk
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.106-113
    • /
    • 2010
  • Fire characteristics can be analyzed more realistically by using more accurate material properties related to the fire dynamics and one way to acquire these fire properties is to use one of the inverse property analyses. In this study the genetic algorithm which is frequently applied for the inverse heat transfer problems is selected to demonstrate the procedure of obtaining fire properties of the solid charring material with relatively simple chemical structure. The thermal decomposition on the surface of the test plate is occurred by receiving the radiative energy from external heat sources, and in this process the heat transfer through the test plate can be simplified by an unsteady 1-D problem. The inverse property analysis based on the genetic algorithm is then applied for the estimation of the properties related to the reaction pyrolysis. The input parameters for the analysis are the surface temperature and mass loss rate of the char plate which are determined from the unsteady 1-D analysis with a givenset of 8 properties. The estimated properties using the inverse analysis based on the genetic algorithm show acceptable agreements with the input properties used to obtain the surface temperature and mass loss rate with errors between 1.8% for the specific heat of the virgin material and 151% for the specific heat of the charred material.

A Comparative Study on Heat Loss in Rock Cavern Type and Above-Ground Type Thermal Energy Storages (암반공동 열에너지저장과 지상식 열에너지저장의 열손실 비교 분석)

  • Park, Jung-Wook;Ryu, Dongwoo;Park, Dohyun;Choi, Byung-Hee;Synn, Joong-Ho;Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.442-453
    • /
    • 2013
  • A large-scale high-temperature thermal energy storage(TES) was numerically modeled and the heat loss through storage tank walls was analyzed using a commercial code, FLAC3D. The operations of rock cavern type and above-ground type thermal energy storages with identical operating condition were simulated for a period of five consecutive years, in which it was assumed that the dominant heat transfer mechanism would be conduction in massive rock for the former and convection in the atmosphere for the latter. The variation of storage temperature resulting from periodic charging and discharging of thermal energy was considered in each simulation, and the effect of insulation thickness on the characteristics of heat loss was also examined. A comparison of the simulation results of different storage models presented that the heat loss rate of above-ground type TES was maintained constant over the operation period, while that of rock cavern type TES decreased rapidly in the early operation stage and tended to converge towards a certain value. The decrease in heat loss rate of rock cavern type TES can be attributed to the reduction in heat flux through storage tank walls followed by increase in surrounding rock mass temperature. The amount of cumulative heat loss from rock cavern type TES over a period of five-year operation was 72.7% of that from above-ground type TES. The heat loss rate of rock cavern type obtained in long-period operation showed less sensitive variations to insulation thickness than that of above-ground type TES.

Numerical analysis of solar pond with insulation layer (단열층을 가지는 솔라 폰드의 수치해석)

  • Yu, Jik-Su;Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.264-269
    • /
    • 2016
  • This paper reports a fundamental study of temperature characteristics of a solar pond with an insulation layer. Further, these characteristics were compared with those of a solar pond without the insulation layer. The governing equation was discretized via finite difference method. The governing equations are two-dimensional unsteady-state second-order partial differential equations. The conclusions of the study are as follows: 1) If the depth of the solar pond was increased, the desired effect of increase in temperature was not produced because the amount of solar insolation received by the bottom of the solar pond decreased. 2) As the temperature of the soil during winter is higher than the temperature of the water in a solar pond, heat was transferred from the soil to the solar pond. 3) For the case of the solar pond with insulation layer, it was estimated that the dependence rate of solar energy was 83.3% and that of the boiler was 16.7%.