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Cp = specific heat

NOTATION _
g = acceleration due to gravity

a = mesh aspect ratio, = 8X/AY Cr = Grashof number, = 53(02-01)L3/V2

AR = ratio of cavityheight to its width, = H/L h = local heat transfer coefficient, = -a/(8,-0,)

C = constant H = height of enclosures

*AuiEa RELKE MEMWANK
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k  =thermal conductivity

width of enclosures

Nu = local value of Nusselt number

Nu = mean value of Nusselt number

p = pressure

P = dimensionless pressure deviation, = p*L2/ ,0V2
Pr = Prandtl number, = uCp/k

q = heat flux density

Ra = Rayleigh number, = GrxPr

t = time

T = dimensionless temperature, = (0-00) /@ 2-60)

u = velocity in the x-direction

U = dimensionless velocity in the X-direction, =
ulL /v

v = velocity in the y-direction

V = dimensionless velocity in the Y-direction, =
vL/v

w = velocity vector, = ifu + jv

W =length of enclosures in z-direction

x = horizontal coordinate

X = dimensionless horizontal coordinate, = x/L

y = vertical coordinate

Y = dimensionless vertical coordinate, = y/L

Greek Letters

Ax = grid spacing in the x-direction
Ay = grid spacing in the y-direction

= time increment

enclosures tilt angle from horizontal

volume coefficient of thermal expansion, = 1/0

accuracy check value

= dimensionless vorticity, = -vzlll
= temperatute

= dynamic viscosity

= kinematic viscosity

= density

= dimensionless time, = tIo'/L2

dimensionless stream function

£ €D TR o QP

relaxation parameter

Mathematical symbols

- 25~

g—t = substantial derivative, =£‘+ Ua_ax + V{?T
V = vector operator, = —a— + i

ax dy
V2 = two-dimensional Laplacian, = 22 + 32

' ax? T ay?
Subscripts
d = refers to a departure corner
i = denotes to the space subscripts of grid point
in the X-direction

j = denotes to the space subscripts of grid point

in the Y-direction
p = denotes to the penetration
s = refers to a starting corner

x = refers to the based on x
[

denotes to the initial and static state

refers to the cold plate

i

refers to the hot plate

Superscripts

refers to the number of time steps

=
]

refers to the number of iterations

it

refers to the perturbation above the static

state

I. Introduction

The natural convective heat loss across the en-
closed air space heated from the bottom is of interest
in many engineering systems. In flat plate solar
collectors the natural convective heat loss can con-
stitute the main mode of heat loss. Reduction of
heat loss through cover plates will increase collector
efficiency and allow smaller collector area to be
used.

A phenomena of thermal expansion will occur
in a layer of air enclosed which is initially rest and
heated from the bottom. If the buoyancy driven
by thermal expansion is surpassed the stability factor -
viscosity or thermal conductivity - of the fluid,
the fluid becomes unstable, and then the heat transfer
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rate-increases suddenly.

The partial differential equations governing these
phenomena are non-linear, and it is hardly surprising
that their analytic solution is very difficult or even
impossible unless considerable simplifications are made.

In an attempt to overcome these difficulties and
thereby to extend the range of possible solutions,

the finite difference techniques is becoming widely
used with the aid of electronic digital computers
having high computational speed and large capacity.
The purpose of the present work is to examine one
particular area of this growing field, viz., that dealing
with the finite difference solution of the equations
not only of momentum transfer but also of energy
transfer, in two dimensional flow.

Indeed, the ultimate aim of this type of work
is to find out at least an approximate solution of
any analytically intractable problem involving fluid
flow and heat transfer.

The specific purpose of this study is:

(1) to develop a finite difference techniques which
is applicable for the solution of the simultaneous
nonlinear partial differential equations governing the
momemtum and heat transfer in inclined flat plate
enclosures,

(2) to examine the validity of the techniques
by solving a known problem and comparing the
results with the existing analytic and experimental
results, and

(3) to investigate the effects of the angle of
inclination and the aspect ratio of the enclosures
on the natural convective heat transfer phenomena
inside the enclosures, using the finite difference tech-
niques developed in this study.

II. Review of Literatures

A major concern of solar collector designers
is the reduction of heat losses from the hot solar
absorber to the cooler environment. Designers seek
economic alternatives to minimize these losses, which
result from conductiveconvective and thermal radia-

tive heat exchanges.

- 26—

Natural convection in an inclined rectangular
region has received increasing attention in recent
years.

Batchelor [2] derived the equations géveming
heat transfer across an air space between two vertical
plane boundaries, which is apart distance L, and
held at different temperatures. The air space was
enclosed by the horizontal plane boundaries, or border
strips, distant H apart.

Poots [14] has presented an analytical solution
to the steady state cavity wall problem, by expressing
temperature and stream function as two doubly
infinite series of orthogonal polynomial functions,
with appropriate weighting coefficients.

There is a lack of agreement on the effect of
aspect ratio on the average heat transfer coefficient.
Batchelor [2] has ‘theoretically determined that the
boundary effect of enclosures should extend along
the heated surface for a distance approximately equal
to the plate spacing. This implies that the effect
of aspect ratio decreases as aspect ratio increases.
Dropkin and Sommerscales [4] have found no effect
of aspect ratio in any angles of inclination.

The equations governing the inclined air cells
with two side wall boundary conditions, namely that
of perfectly insulating and infinitely conducting side
walls are solved by Koutsoheras and Charters [7].
They showed that typical curves of mean Nusselt
number vs the angle of inclination for the two
extreme cases of zero heat flux and linear temperature
gradient. Both curves are similar and exhibit maxima
at an inclination of about 60 degrees. This agrees
with the previous work {10}.

An inteferometric study was used to determine
the local and average values of the Nusselt number
in inclined flat plate enclosures by Randall et al.
[15], and Meyer et al. [9] have conducted experi-
ments with air in enclosures of aspect ratios of
0.25 to 4 and tilt angle of 45, 60 and 90 degrees.
The results indicate that the convective heat transfer
is a strong function of the aspect ratio when the

aspect ratio is less than 4.
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A numerical methods for solving the simultaneous
non-linear partial differential equations governing the
conservation of mass, momentum, and energy in
problems of natural convection has been studied
recently. In the initial investigation, Martini and
Churchill [8] measured the temperature and velocity
fields for air contained in a long hollow horizontal
cylinder with one vertical half heated and the other
cooled. They did not complete a numerical solution
due to the limitations of the available computer.
Thereafter, Hellums and Churchill [5] developed an
explicit finite difference method for governing the
transient solution to the above problem and also for
free convection at a vertical plate.

- A finite difference technique has been developed
for predicting the transient and steady state natural
convection in a rectangular enclosures by Wilkes and
Churchill [16].

transport equations are solved by an implicit alternating

The governing vorticity and energy
direction finite difference method. Transient and
steady state isothermals and streamlines are obtained
for Grashof numbers up to 100,000 and for aspect
ratios of 1, 2 and 3. But they did not report the
effects of the angle of inclination and the aspect
ratio of the enclosures on the average heat transfer
coefficient.

Recently, Ozoe et al. [10-13] investigated natural
convection in a long iaclined channel with a square
cross section and found a minimum and maximum
in the heat flux during rotation of the hot plate
from the horizontal to the vertical plane about the
long axis. They reported good agreement between
the experimental average Nusselt number and the
one predicted by numerical integration. The minimum
heat flux occurred as the angle of inclination was
decreased to about 10 degrees, and the maximum
heat flux occurred at an inclination of about 50 degrees

for al' nf the Rayleigh numbers which were studied.

III. Governing Differential Equations

A. Problem Statement and basic Equations

-27 -

The geometrical configuration of flat plate en-
closures is shown in Fig. 1. The aspect ratio is
assumed to be characterized by H/L only, i.e. W/L
is presumed to be enough so that the end walls
in the z-direction do not affect the behavior signifi-
cantly. The top surface of the enclosures was main-
tained at a constant temperature and the bottom
surface also at constant but high temperature than
that of the top surface. Let the initial temperature
equal the mean of the applied temperatures, so that
(01+ 02)/2. The other sides were thermally insula-
ted. The whole enclosures was then rotated about
the z-axis.

Fig. 1. Geomerical configuration of flat plate

enclosures

To formulate the boundary value problem that
describes this phenomena it is assumed: (a) the fluid
is Newtonian, (b) the motion is two-dimensional and
time-dependent, (c) the frictional heating is negligible,
(d) the temperature difference between hot surface
and cold surface is small compared with the absolute
temperatures of the cold surface. This permits so-
called the Boussinesq approximation to be invoked,
which permits fluid properties to be taken as con-
stant except for the density variation inducing the

buoyancy force. Density is taken as a function
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of temperature § according to the equation of state

Po 3-1)
P=T+BG-0y @
where, (§ is a constant. Thus the basic equations are:
Vw=0 (3-2)
Dw 1 2
28 w+ 3-3
bt = p Vp+ VW +fe 3-3)
D8 20
—_— = k
PCo v (3-4)

The x- and y-components of momentum equation

(3-3) are as follows:

Qur du B 13p, 82u+82)
I MM Rl WL W W

- g sin (3-5)
v, v, v 13, aV+3
2t Vox Yoy o ay Yo ay‘&’

+ g cosot (3-6)

If there is no fluid motion in the field, the
total pressure is equal to the static pressure. In
general the total pressure may be represented as

the sum of the static pressure and a perturbation:

P=p +pP* (3-7)
Whenu=v=0,

P, .
3 -p g sind = 0 (3-8)
and

ap,
—5;—+pog cosa =0 (3-9)
Then,

. . 10p*

- = —_— ———— -1

b 3x g sintx = gf(f — 0 )sinax P 3x (3-10)

10p aP
— s S0 = - )cosx -——— (3-11)

o 3y g co A CRY 'Y

Substituting equations (3-10) and (3-11) into
the momentum equations (3-5) and (3-6), we obtain

the following forms:

du du 1 op*
a* " 'd 'gm -0 s -5
2 2
9,0 .
+ y(axz + ayz) (3-12)
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%+ ?+v§l—-gae Q))cosa-—-a-L
3 3-
+"(ax2 Sz ) (3-13)

From equations (3-2) and (3-4), the continuity

and energy equation is now exprssed as follows:

du v _

—a—x + ay— 0 (3‘14)
20 3 3 K aza 2%

3t 3y 5Cp ¢ pw! ayZ) (3-15)

Finally, the initial and boundary conditions for
the problem are:
0, 6(x,y,0) = 6o

v(0,y,t) = v(H,y,t) = 0

u(x,y,0) = v(x,y,0) =
u(0,y,t) = u(H,y,t)

L. .
2 0D =3 (Hy,0 =0

u(x,0,t) = v(x,0,t) = 0, 8(x,0,t) = 8

u(x,L,t) = v(x,L,t) = 0, 8(x,L,t) = &,

Equations (3-12) through (3-15) may now be
transformed into non-dimensional form by introducing
suitable dimensionless variables.

Non-dimensional form of the equations (3-12)

through (3-15) and the boundary conditions are as

follows:
LU LA 316
ax oy (3-16)
8u U@_ V_a_U_=GrTsim _op
or oxX aY 2 X
2 2
By 2y
)¢ oY
(317
ov ov ov GrTcosx OP
o "V Vey T 2 oy
+a2v a2v 18
ax2. ay? 3-18)
AT 3T 1 PT T
U 3-19
ar  Uax oy p,(ax2a'7) 319

UX,Y,0) = V(X,Y,0) = T(X,Y,0) =0
U(0,Y,n) = U(AR,Y,7) =V(0,Y, ) =V(AR, Y = 0
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'gTT((O,Y,T) = g)l; (ARY,T) =

UX,0n=vVX,0,m7=0,TX,0,) =-1

UX,1n=vX,1,n=0,TX,1,7 =1

Equations (3-16) through (3-19) were not in
a suitable form for finite difference computation
due to the appearance of pressure in both equations
of motion.  Differentiating equations (3-17) and
(3-18) with respect to Y and X, respectively, sub-
tracting, and substituting equation (3-16) produces
the following equation in which pressure term no
longer appears: i

y Pu, o 92v
B Uiyt VT Ve

¥V Gt BT AT

Vaxoy "2 (gY SR+ ax Ot

I AL "
o ox (3-20)

The introduction of a dimensionless vorticity
£ = '—vz W, where the dimensionless stream function
was such that U = 9y/0Y and V = - 0y/0X, enables

the problem to be written as follows:

o 0 0  Groor o 0T
o TVt Vay T2 Gy ™ ax %
ik (3-21)
oT ar oT _ 1 »
I o v 8- 27 322
- +U Y +V 3y BV ( )
FY=- (3-23)
u=Y o %Y
=3y ' VT ax (3-24)

EXY,N=TX,YDN=0

Y(0,Y,n= a‘ll (0,Y,7) = Y(ARY,D) ——ai(AR Y,T)

X ax
=0 )
ot =T _
ax (0¥ =5 (ARY,T) = 0
L - i,
‘p(X,O,T) —E(xvovf) - 0) T(X,O,T) =-1
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V1,7 =—g%(x,1.-r)= 0, TX,1m=1

Equations (3-21) through (3-24) here are called
the vorticity transport; temperature, stream function,
and velocity equations, respectively. With given the
boundary conditions, the above five simultaneous
non-linear partial differential equations may be solved
and then the dependent variables, T, £, V¥, U, and
V are obtained.

IV. Finite Difference Method

A. Calculation of Temperature

The *basic finite difference formula for partial

- derivatives can be derived by expanding into Taylor

series and taking up to second order terms. In

the first system, a Taylor series expansion gives

ntl_ o n 00 n 92T, @n?
Ti =Tt s or a2
+ 0 @1

If we only consider the convective terms in

temperature equation, then equation (3-22) becomes
—=-Ug= -V (4-2)

Differentiating equation (4-2) with respect to

time, the above equation becomes as following form:
—— = (-Us—-V=2) (4-3)

Using the forward-time and centered-spaces finite
differencing, and substituting equation (4-2) and (4-3)
into equation (4-1), then the temperature, ?‘;":1,
considering only convective term at the (n+l) time
step is given by

+1 [u
i T ZAXAY 1T 501 =T BY + Y

@en?

Tja,i ™ T 9K + gy 2212031V i1

Ty 1) @02+ auZ, (1

Y1) Tjen - i+l

2T+ Tj5 1) GO+ V33U 14y = Uy ip)



RUR R @L F0% F 1% 1985F 6 A

(Tj,i ™ Tjo1 ) XAV + Uy iV 54g - Vj i)
(Tjay = Tjop ) OXEY) + 205 Ve (T g +
Ti-,ic1 = T i1 ~ Tjoiw)) OXOY) + V5
(Ujﬂ,i i-1,0 (T = T iy (&XAY) + Ui
Vis1,i = Vim1 D (Tj e - Tj i) OXAY) +2V;
Vit~ Vie1,9 Tt i~ Tjo1,) (%3

+ 4Vj2’i (Tja1 47255+ Tjg ) e @4

Now adding the conductive term, the complete

form of temperature equation is presented ag‘ollows:

+1 _oAn+l Antl
o+l f[\'nﬂ (%Tﬁl ﬁ\]nx ?djnx 1,
i jirl * Pr 2

AR AR i

j+l,i IR j-1,
N
LS @erl e,
Js 2 2 jitl Jid
Pr(2X %) (8Y%)
?un+1 (AY) +( J+1 i _2:l\m+l %’n
@} @)

The wall temperatures are now obtained from
the insulated type of boundary condition. In evalu-
ating these temperatures, it is particularly important
to be consistent with the finite difference scheme
used at the interior points.

Derivations for the wall temperatures are present-
ed in Kim[l].

obtained for temperature at the insulated wall:

The following approximation is

Tj;= L,

A 30 i @5

Tj i+ 2)

B. Calculation of Stream Field

The vorticity is also obtained by the same method
as done in calculation of temperature.

Equation (3-23) is the Poisson form of the
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stream function. This equation can be solved by
method of Richardson, Liebmann, SOR (Successive
Over-Relaxation). Using the SOR method, the equa-
tion (3-23) may be rewritten as follows:

+1_gk 9 a2t gk

d'jk,i “’il T + 29 [ “"fi*

2‘1)(+1. ~2(1+a )\P“ J

“n
In this work the convergence test of three methods

2
+11

+1
ji-1t e

for solving the Poisson equation was performed to
determine which method would be efficient. There-
fore, all of the numerical simulation were made
by the efficient method. The criterion of iteration
convergence for steady state |/ was given as

+1_
Vi “‘j,i’l

gk

i

where, € was 1.0x10'4.

<

max | <e€

(4-8)

The new wall vorticities were obtained from

the no-slip conditions.
Wiiaj

49
o) 4-9)

B

Finally, the new velocity fields of U and V
were obtained from the centered-spaces finite dif-
ference approximation of the velocity equation (3-24)
and the wall velocities become zero from the no-

slip conditions.

Vieni- ¥

. 4-
4 iy (4-10)
Vit Y (4-11)

C. Local and Mean Nusselt Number
The heat flux at the cold plate Y = 0 is an

important quantity, since it equals the rate of heat

transfer across the enclosures. Now the local heat

flux density at this plate is

(92 ) aT
L

oy ly=0
(4-12)

00
q=_k(5‘y_) ly=0
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Since the overall temperature difference between
the inclined plates is (02 - 91) = 2(8,- 00), a local
transfer coefficient may be defined as following:

q _k T

hse——>r— === G v = (4-13)
o8 2Ly’ Y =0
2771
The corresponding local Nusselt number is
Nux=£I:_ 1 ar 4-14)

e 2 ('67) ‘Y =0
The mean Nusselt number over the cold plate of
the enclosures was obtained by numerical integration

of the local Nusselt number and its value is defined

as follows:

Nu =10 Nu dx (4-15)

1
H
The right-hand side of eugation (4-15) was inte-

grated using Simpson’s formula.

V. Results and Discussion

A. Conditions for Computer Solution

As the result of a stability analysis using the
von Neumann’s stability criteria, the following con-

dition was sufficient to ensure stability for the

conduction term of the energy equation and the
diffuse term of the vorticity transport equation.

or 1 1 )

And, for the convective term the following con-

dition was required for limitation of the time incre-
ment,

ardiL

+—'ZT‘{—) =1 (5-2)

Since the equation (5-1) gives the practical limi-
tation to the time increment, the equation (5-1)
was initially used to solve the energy equation and
the equaﬁon (5-2) limited by convective term was

used for the next time steps.

B. Validity of the Results

The most vital question that may be asked
about the computed results is that concerning their
accuracy. There are three types of check which may
be made, viz. (a) a direct comparison with a known
analytical solution, (b) a direct comparison with
experimental results, and (c) subjection of the comput-

ed results to further tests to see if they are reason-

190 1.0
X
Lear 0.5 -
1
0 0.5 Y 0o 0 0.5 Y 1.0
(a) ()
Fig. 2. Comparison of computed steady state isothermals with Poots’ analytic solution for AR=1.0,

Pr=0.73, Ra= 5.0x103, a=90"

-31-

: (a) computed solution, insulated (b) Poots’ selution, linear
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0 * T 1.0 T
X X
0.5 =4 0.5p .
1
0 5 Y 1.0 0 1.0

0.5

(a)

Fig.3. Comparison of computed steady state streamlines with Poots’ anaiytic solution for AR=1.0,
Pr=0.73, Ra= 5.0x10%,«a=90" . (a) computed solution, insulated (b) Poots’ solution. linear

100 10
8- amlse sl s Lco
[ =O———0~ Present study [ a=45
. o B~ - —~&-  Buchberg et al. |3 ] 12 6}
s | -
2 H---—M=  Hollands et al. {6
34 __4
s
H
H
2 2}
o
H
o
&
1
103
1
8: a=30°
3 6
o= = s

-
T | i Il Lol L1 I1g 1 /5 411111[ 1 | U W W ]
T

103 10% Ra€O5E 10% 103 20) RatOSa
(b} 4

Fig. 4. Comparison of present mean Nusselt number results with those of previous ivestigators :

(a) @=15" (b) a=30° {(c¢) a=45 (d) a=60°

streamlines plots as shown Fig. 2 and 3. This co-

able.

Firstly, the finite difference solution for a 11 x incidence is such as to substantiate the validity of
11 mesh was compared with the analytical steady both Poots’ and the present values. The streamlines
state solution of Poots [14] in the isothermals and are fairly close and the isothermals are almost identical

-32-
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except the case in the vicinity of both short walls,
which is considered for linear variation of temperature
in Poots’ analysis.

Secondly, the computed mean Nusselt number,
Nu under steady state may be compared with the
following correlations based on the experiments of
Buchberg et al. [3] and Hollands et al. [6].

Buchberg et al. correlations:
Nu=1+1.446]1 - 1708
Ra cosxx

1708 < Ra cost< 5900

] for

Nu = 0.229(Ra cosar)-252 for
5900 < Ra cosar < 9.23 x 10

Table 1. Mean Nusselt number at cold plate
for AR=1.0, Pr=10.73, Ra=1.0x10!

a=99 deg.
B AX=AY=0.1 | AX=4Y=0.05
Ar=0.0005 | Ar=0.001 [ A1=0.0004

0. 0004 - - % 78082
0. 0005 4.6575 - -

0. 0008 - - 6.5772
0. 001 4.3620 4.3151 -

0.0012 - - 5. 7805
0. 0015 4.1053 - -

0. 0016 - - 5. 2149
0. 002 3. 8810 3.8177 4.7874
0.003 3.5007 3. 4439 ~

0. 004 3.2166 3.1541 3.5813
0. 005 2. 9805 2. 9234 ~

0.01 2. 2750 2.2403 2.3620
0.012 2.1135 2.0836 2.1752
0.014 1.9901 1.9633 2,0344
0.016 1.8954 1.8706 1.9236
0.02 1.7703 1.7475 1.7726
0.03 1.7291 1.7089 1.6633
0.04 1. 9844 1. 9663 1.8539
0.05 2.3166 2.288] 2.1653
0.1 2.4130 2.3719 2.2972
0.15 2.4277 2. 3856 2.3087
0.2 2.4263 2.3845 2.3074

Nu = 0.15'7(Ra cosx )0'285 for

9.23 x 10* <Ra cosa < 1.0 x 10°
Hollands et al. correlation:

1.6
(sin 1.80) 1708

Nu=1+144[1- 1708 Q-
Ra costx Ra cosx
Ra costx.1/3
"'[(—5—@—) -1] fora< 60deg.

It should be noted that brackets in these cor-
relations go to zero when negative. Generally speaking,
the values of Nu listed in Table 1 lie roughly between
1% and 85% higher than those predicted be these
correlations.  Perhaps, this comperison cannot be
regarded as conclusive one, since the effect of aspect
ratio on the mean Nusselt number was excluded.
A comparison of present mean Nusselt number with

those of investigators is given in Fig. 4.

mean Nusselt number Nu

1.5 1 I
0 0.05 0.10 u.1%
Dimensionless Time T
Fig.5. Variation of mean Nusselt number with

time; AR=1, Pr=0.73, Ra=1.0x10*

Thirdly, it is reasomable to expect that the
resuits computed by the finite difference procedure
should satisfy the following requirements:

(a) The steady state solution should be indepen-
dent of the time increment employed in this study.
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(b) A subdivision of the grid spacing should not

alter the results greatly.

(¢) The use of a smaller time increment should

not alter the transient results greatly.

Each of these tests was applied in turn to the

results computed for the condition viz. an insulated squ-
are cavity, with Pr = 0.73, Gr = 13,699, and &X =
AY = 0.1, corresponding to a 11 x 11 mesh. The

following results were obtained.

(a) The steady state solutions reached essentially

by a time 7 = 0.25 were almost the same as two

different values of time increment, viz. &r = 0.0025
and A7 =0.001.

(b) The computations were repeated for a 21 x

21 mesh, ie. one with half the original spacing,

but the new values of temperature showed little

deviation from their values on the 11 x 11 mesh.

For example, in passing to the finer grid, the stream

function at the center of the cavity changed only
slightly, from 7.561 to 7.125. Considering the com-

plexity of the problem, these differences are astonish-

ingly small. These findings, taken in conjuction

with the good agreement with Poots’ solution, indicate

2

0

Ra=20000

L L

o
T

10000

T 1 1

w
LU S {

T U 7T

that a 11 x 11 mesh is probbably adequate for the
remaining computations of this work. This is very
fortunate, especially since the computing time increases
rapidly as the mesh is refined.

(¢) The effect on the transient mean Nusselt
number of changing the time increment from &7
= 0.0025 to 47 = 0.001 is considered to be almost
negligible as shown in Table 1.

3.
i R
=20000
F a=200
L
3.9
2 F 10000
-
2.5
L 8000
- 3000
S0
z.qL
1.5+
1.0
0
3.5
b=
3.of Ra=20000
2 L
2.5}
2.0k
1.54
1.0 1 1 | 1 L 1 1 1
10 20 30 40 50 60 70 8C 90
a, deg

(¢)

Fig. 6. Computed mean Nusselt numbers vs inclination at various Rayleigh numbers . (a) AR=1.0

(b AR=2.0 (¢) AR=73.0
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C. Heat Transfer Across the Enclosures

The variation of the mean Nusselt number Nu
with time is shown in Table 1 and Fig. 5, for insulated
type of boundary condition. Referring to Fig. §,
the mean Nusselt number falls sharply from the
initial value and reaches a minimum at about T =
0.026. During these initial stages, the heat is transfer-
red mainly by conduction, and the fluid velocity
accelerates from its original value of zero.

The effect of convective heat transfer become
increasingly apparent as time advances beyond T =
0.026. A small overshoot at T = 0.066 and an
even smaller undershoot at T = 0.104 are visible
from Fig. 5. The computed results showed that the
Nusselt number also exhibited further oscillations,
but their magnitude decayed very rapidly. The final
value of the mean Nusselt number of 2.3845 indicates

that convection now predominates over conduction.

2 5
o a=45 deg, AR=1.0
24 60 l
H 30
2k 's
= 30
° 2
H
2
z
H
g I v sl 1 i g1yl
103 104 2a 105
{a)
sF
EIAR a=60 deg AR=2.0
LL 45 l
30 =
3
90
15
Zr
1 Lo el [ A W
107 197 R mn°
(b) é
5
12 2=60 deg AR=3.0
o 45 l
R 90
3 30
15
2+
.
1 bl [ T T B I

103 104 105
{c)
Fig.7. Computed mean Nusselt numbers vs Ra-
yleigh numbers at various inclination:

(a) AR=1.0 (b) AR=~2.0 (c) AR=3.0

The effect on the mean Nusselt number of
Rayleigh number is illustrated in Figs. 6 and 7
for various aspect ratios of 1.0, 2.0, and 3.0 Referring
to Figs. 6 and 7, the maximum mean Nusselt number
was found to be occurred at about 45 degrees of
inclination for aspect ratio of 1.0 and about 60 degrees
of inclination for aspect ratio of 2.0, 3.0, 5.0, and
9.0. These results have a good agreements with the
previous experimental results [6,9-12].

The effect on the mean Nusselt number of the
aspect ratio is shown in Fig. 8 for various Grashof
number and the angle of inclination. For the aspect
ratio of 1.0 large Nusselt number was appeared at
the angle of inclination less than 60 degrees,- and
also for the increasing aspect ratio large Nusselt

number was appeared at the angle of inclination

3.5
a=90"

‘,33.0— -o—8& Ra=20000
=z
. ~O~- ~0- Ra=10000
o
£ Ra= 8000
R B
o
<
v 2.0k
Z
o
&
1.5k

1.0

i 10
3.
a=60°

. 3.0~ —fr -~ ~B Ra=4000
2 -O———0- Ra=2000

2.%

2.4-

1.5r—

1.

Fig. 8. Computed mean Nusselt numbers vs as-
pect ratios at various Rayleigh numbers
:(a) a=90" (b) a=60" (c) a=45" (d)
=30
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Fig. 8.

(Continued.)

greater than 60 degrees. As shown in Fig. 8, the
mean Nusselt number gradually decreased by the
increase of aspect ratio at the various Rayleigh numbers
and the angles of inclination except for the angle
of inclination of 90 degrees. For the angle of inclina-
tion 90 degrees the mean Nusselt number reaches
a maximum at an aspect ratio of 2.0, and then
decreases as aspect ratio is further increased.

The effect of the angle of inclination on the
velocity field is illustrated in Fig. 9 for Rayleigh
number of 1.0x10%, Prandtl number of 0.73, and
aspect ratio of 1.0. The highest velocity is about
the angle of inclination of 45 degrees which agrees

with the maximum in the mean Nusselt number.

D. Isothermals and Streamlines

Perhaps the most interesting results of this study
are the transient and steady state iosthermals and

Cold 0=90°

——— a=60"

------- a=h5®

—-— a230°

Cold
- -20

- -10

-0

I -20

- -10

Y=0.5

oF

Fig.9. Computed effect of angle of inclination
on velocity field for AR=1.0, Pr=0.73
Ra= 1.0x10*, =90, insulated

streamlines.

[1}.

Those are presented in detail in Kim

V1. Conclusions

In this work heat transfer by natural convection
in inclined flat plate enclosures heated from the
bottom has been investigated using numerical techni-
ques. The time dependent governing differential
equations were solved using a finite difference method.
Steady state solutions were obtained for the values

of the Grashof number ranging from 2.74x103 to
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2.0x10%, for the Prandtl number of 0.73, and for
aspect ratios of 1.0, 2.0, 3.0, 5.0, and 9.0. The
angles of inclination of the enclosure with respect
to the horizontal were 15, 30, 45, 60, 90, 120,
135, and 150 degrees.
oresent study are summarized as follows:

1.

convective and diffuse terms were seperately con-

The results obtained in the

A finite difference technique in which the

sidered was developed for the solution of simultaneous
non-linear partial differential equations and proved
to be effectively stable.

2. Steady state solutions were obtained in in-
clined enclosures maintained at a higher uniform
temperature on one inclined side and at a lower
uniform temperature on the opposite side. There
was a good agreement between the computed values
and theoretical and experimental results which were
determined previously. The variation of isothermals
and streamlines in transient and steady state may
also be analyzed in this result.

3. Based on the results of the effect of the angle
of inclination on the mean Nusselt number, the
maximum value is found to be occurred at 45 degrees
for aspect ratio of 1.0 and 60 degrees for aspect ratios
of 2.0, 3.0, 5.0, and 9,0, respectively.

4. The Nusselt number increases with increase
in the Rayleigh number, regardless of the angle of
inclination. Also, as the aspect ratio increases, the
mean Nusselt number decreases at various Rayleigh
numbers and angles of inclination except for the
angle of 90 degrees. The mean Nusselt number
reaches a maximum at an aspect ratio of 2.0, and
then gradually decreases as aspect ratio is further

increased.
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