• Title/Summary/Keyword: 비정상 열전달해석

Search Result 86, Processing Time 0.034 seconds

A Numerical Model to Evaluate Fire-Resistant Capacity of the Reinforced Concrete Members (화재에 손상된 철근콘크리트 부재의 수치모델 및 내화성능해석)

  • Hwang, Jin-Wook;Ha, Sang-Hee;Lee, Yong-Hoon;Kim, Wha-Jung;Kwak, Hyo-Gyoung
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.497-508
    • /
    • 2013
  • This paper introduces a numerical model which can evaluate the fire-resistant capacity of reinforced concrete members. On the basis of the transient heat transfer considering the heat conduction, convection and radiation, time-dependent temperature distribution across a section is determined. A layered fiber section method is adopted to consider non-linear material properties depending on the temperature and varying with the position of a fiber. Furthermore, effects of non-mechanical strains of each fiber like thermal expansion, transient strain and creep strain are reflected on the non-linear structural analysis to take into account the extreme temperature variation induced by the fire. Analysis results by the numerical model are compared with experimental data from the standard fire tests to validate an exactness of the introduced numerical model. Also, time-dependent changes in the resisting capacities of reinforced concrete members exposed to fire are investigated through the analyses and, the resisting capacities evaluated are compared with those determined by the design code.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.

Unsteady heat transfer and thermal stress analysis of a gasoline engine cylinder head (실린더 헤드의 비정상 열전달 및 열응력 해석)

  • 박진무;임영훈;김병탁
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.41-52
    • /
    • 1990
  • In this study are determined the unsteady temperature and thermal stress fields for a domestic 4-cylinder, 4-cycle gasoline engine cylinder head by the three-dimensional finite element method. A representative part of the cylinder head is modelled as a combination of hexahedron isoparametric elements, and the time-dependent temperature and the heat transfer coefficient of the gas are imposed as the thermal boundary conditions for the engine speeds of 500 rpm and 2000 rpm. The obtained results, which are represented graphically, indicate that the amplitudes of temperature fluctuation during a cycle are about 10.deg. C and 3.deg. C respectively on the surface of combustion chamber, and the maximum temperature fields occur at 30.deg. , 10.deg. respectively before the initiation of the exhaust stroke. Thermal stress fields due to non-uniform temperature distributions show that compressive stress is much larger than tensile stress throughout a cycle. It is also found that the compressive stress varies with substantial amplitude between the exhaust port and ignition plug hole, and the high tensile stress with small fluctuation occurs between exhaust port and the adjacent head bolt hole.

  • PDF

Numerical Analysis for the Unsteady Laminar Flow and Heat Transfer Around a Circular Cylinder (원주 주위의 비정상 층류유동과 열전달에 대한 수치해석)

  • 조석호;남청도;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.64-72
    • /
    • 1991
  • The unsteady, two-dimensional laminar flow and heat transfer of an incompressible, constant-property fluid flowing around a circular cylinder are numerically analyzed. The Navier-Strokes equation and the energy equation are solved by the finite difference method. The range of the Reynolds number is 10 to 100 and the Prandtl number considered is 0.7. The contours of the flow pattern, equi-vorticity line and isotherm pattern around a circular cylinder are shown. Also, numerical solutions of the surface vorticity, pressure coefficient, drag coefficient, local Nusselt number and mean Nusselt number are obtained. The numerical results for the final time fo calculation are compared with the other available experimental and theoretical results for the steady state and are found to be in good agreement with them.

  • PDF

An Experimental Study and Transient Simulations of the Radiant Heating Floor Panel by Using Finite Difference Methods (유한차분법(有限差分法)을 이용한 온수온돌(溫水溫突) 바닥구조체(構造體)의 비정상(非正常) 열전달(熱傳達) 해석(解析)과 실험(實驗) 연구(硏究))

  • Sohn, J.Y.;Chung, K.S.;Park, B.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.1
    • /
    • pp.69-77
    • /
    • 1991
  • "Ondol" have been used in residential buildings for several thousands years in Korea. The traditional "Ondol" heating system of Korea has changed into the radiant heating system with piping embedded in floors or slabs. This study reports the results of transient experiments performed on a radiant heating system and enclosure. The paper presents some details of the thermal response of slab-heated buildings to varying patterns of heat input. Furthermore, I'll compare the results of experimentation with the ones of the numerical simulation by using the explicit and implicit forms of the finite difference methods (FDM). The study has contributed to testify the feasibility of numerical analysis, and the understanding of the transient behavior of radiant heating panels and enclosure exposed to this type of heating system.

  • PDF

Determination of the Frozen Penetration Depth of a Freezing Soil Medium including a Pipeline in a Closed System (파이프라인이 매설된 폐쇄형 동결토의 동결심도 결정)

  • Song Weon-Keun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.451-458
    • /
    • 2004
  • The study was focused on the development of computational scheme in three dimensional configurations by applying effective heat capacity model to the numerical procedure in order to predict the temperature profiles of a buried pipeline and the frozen penetration depth(FPD) of a freezing soil medium. To realize this, the investigator conducted the unsteady state heat transfer analysis, using the commercial code ABAQUS, for the freezing granite soil medium including a pipeline in a closed system. The proposed model took into consideration the phase change effect of in situ pore water in the frozen fringe. The comparison of results obtained by the proposed model and the actual performances was valuable in establishing a level of confidence in the application of introduced theory.

New Fire Resistant Method of Reinforced Tunnel Structures Using Engineered Cementitious Composites (터널구조물의 내화대책에 대한 ECC 적용 가능성)

  • Kim, Jung-Hee;Kwon, Young-Jin;Lee, Hye-Kyung;Kim, Jae-Jwan;Han, Byung-Chan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.441-448
    • /
    • 2009
  • 화재에 대한 안전성 확보는 ECC 등과 같은 신소재를 실제 구조물에 적용 또는 실용화하기 위해 필요한 중요한 요소 중 하나이다. 본 논문은 터널구조물에 대한 내화대책의 일환으로써 ECC의 적용가능성을 평가하고자 하는 것을 목적으로 한다. 이를 위하여 터널구조물의 화재 온도조건인 RABT 화재온도이력곡선을 적용하여 내화성능을 실험적으로 평가하였다. 또한 비정상 온도분포해석 기법을 이용하여 이를 해석적으로 묘사 검증하였으며, 실험결과를 통해 검증된 해석기법을 이용하여 터널라이닝에 대한 열전달 해석을 수행하여 ECC의 적용가능성을 고찰하였다. 실험결과 ECC는 폭렬 및 화재상태에서의 모체콘크리트에 열화가 발생하지 않았으며, 기존 콘크리트 및 내화소재와의 상대 비교에 있어서도 가장 우수한 내화성능을 나타냈다. 이를 통하여 터널구조물의 내화대책에 있어 ECC 소재가 적용가능성이 있는 것으로 판단되었다.

  • PDF

Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel (쉴드 터널용 프리캐스트 세그먼트 콘크리트 라이닝의 내화성능)

  • Han, Byung-Chan;Harada, kazunori;Kwon, Young-Jin;Kim, Yun Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.95-105
    • /
    • 2014
  • Reinforced concrete (RC) shield tunnel lining must be designed for fireproof performance because the lining is sometimes exposed to very high temperature due to traffic accidents. Both experimental and numerical studies are carried out to evaluate fire resistance performance of precast RC tunnel lining systems. In the experimental studies, six full-scale precast RC tunnel segments are exposed to fire in order to examine the influence of various parameters on the fire resistance performance of precast RC tunnel lining. We used the temperature curve of the RABT criteria, which are severe conditions of fire temperatures. The fire test showed that the explosive spalling was not observed by substituting concrete to PP fiber reinforced concrete. A transient heat flow analysis was carried out in consideration of the material properties that change with temperature, and the results showed good agreement with the test results.

Simulation of the hot water ONDOL heating system by response factor method (應答係數法에 의한 溫水 溫室 暖房 시스템의 Simulation)

  • 조상준;민만기;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.409-424
    • /
    • 1987
  • Simulation on the hot water ONDOL heating system was made in order to investigate the variation of room temperature and specific fuel consumption of boiler. Heat balance equation was derived by response factors and solved implicitly. Variation of room temperature and specific fuel consumption of boiler were calculated with respect to the thickness of room floor, the absorptivity of wall for solar radiation, on-off temperature range of boiler and air exchange. The results show that specific fuel consumption of boiler is independent of the thickness of room floor and decreases with increasing the absorptivity of wall and on-off temperature range of boiler. However, it increases with increasing the air exchange. They also show that, when the absorptivity and on-off temperature range of boiler are increased, the amplitudes of room temperature variation increase.

Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature (화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2007
  • Concrete tunnel lining must be designed to having the fireproof performance because the lining are sometimes exposed to very high temperature due to traffic accident. Such fire temperature may cause explosion of concrete, or collapse of tunnel structure. The purpose of this study is to obtain the fundamental fireproof behavior of fire resistance-engineered cementitious composites(FR-ECC) under fire temperature in order to use the fire protection material in tunnel lining system. The present study conducted the experiment to simulate fire temperature by employing 2 types of FR-ECC and investigated experimentally the explosion and cracks in heated surface of these FR-ECC. Employed temperature curve were hydro carbon(HC, ECl) criterion, which are severe in various criterion of fire temperature. The numerical analysis is carried out the nonlinear transient heat flow analysis and verified against the experimental data. The complex features of behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. By the use of analytical model, the concrete tunnel subjected to fire loads were analyzed and discussed. With comparison of current concrete materials and FR-ECC, the experimental and analytical results of FR-ECC shows the better fire resistance performance than the other.