• 제목/요약/키워드: 비정렬 혼합 격자계

검색결과 11건 처리시간 0.022초

비정렬 혼합 격자계 기반의 삼차원 점성 유동해석코드 개발 (Development of a 3-D Viscous Flow Solver Based on Unstructured Hybrid Meshes)

  • 정문승;권오준
    • 한국항공우주학회지
    • /
    • 제35권8호
    • /
    • pp.677-684
    • /
    • 2007
  • 본 연구에서는 삼차원 점성 유동을 효율적으로 해석하기 위해 사면체, 프리즘, 피라미드를 포함하는 비정렬 혼합격자계를 기반으로 하는 유동해석코드를 개발하였다. 유동의 지배방정식은 격자점 중심의 유한체적법을 사용하여 공간차분회었으며, 제어테적은 메디안 듀얼(median-dual)방법으로 구성하였다. 난류유동 해석은 Spalart-Allmaras 난류모형과 연계하여 계산되었다. 개발된 해석코드의 정상 유동 검증을 위해 삼차원 날개에 대한 층류, 난류유동을 해석하였으며, 비정상 유동 검증을 위해 조화운동에 의해 진동하는 삼차원 날개에 대한 유동해석을 수행하였다.

비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사 (NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 이희동;정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF

비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석 (NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 이희동;정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.

비정렬 및 적응 직교격자를 이용한 2차원 혼합격자계 유동해석 코드 개발 (Development of a 2-dimensional Flow Solver using Hybrid Unstructured and Adaptive Cartesian Meshes)

  • 정민규;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.294-301
    • /
    • 2011
  • A two-dimensional hybrid flaw solver has been developed for the accurate and efficient simulation of steady and unsteady flaw fields. The flow solver was cast to accommodate two different topologies of computational meshes. Triangular meshes are adopted in the near-body region such that complex geometric configurations can be easily modeled, while adaptive Cartesian meshes are, utilized in the off-body region to resolve the flaw more accurately with less numerical dissipation by adopting a spatially high-order accurate scheme and solution-adaptive mesh refinement technique. A chimera mesh technique has been employed to link the two flow regimes adopting each mesh topology. Validations were made for the unsteady inviscid vol1ex convection am the unsteady turbulent flaws over an NACA0012 airfoil, and the results were compared with experimental and other computational results.

  • PDF

비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석 (CAVITATION FLOW SIMULATION FOR A 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 안상준;권오준
    • 한국전산유체공학회지
    • /
    • 제17권1호
    • /
    • pp.94-100
    • /
    • 2012
  • In this paper, the cavitating flows around a hydrofoil have been numerically investigated by using a 2-d multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. The phase change rate between the liquid and vapor phases was determined by Merkle's cavitation model based on the difference between local and vapor pressure. Steady state calculations were made for the modified NACA66 hydrofoil at several flow conditions. Good agreements were obtained between the present results and the experiment for the pressure coefficient on a hydrofoil surface. Additional calculation was made for cloud cavitation around the hydrofoil. The observation of the vapor structure, such as cavity size and shape, was made, and the flow characteristics around the cavity were analyzed. Good agreements were obtained between the present results and the experiment for the frequency and the Strouhal number of cavity oscillation.

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

비정렬 격자계에서 균질혼합 모델을 이용한 수중 운동체의 거동에 관한 수치적 연구 (A COMPUTATIONAL STUDY ABOUT BEHAVIOR OF AN UNDERWATER PROJECTILE USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 조성민;최재훈;권오준
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.15-23
    • /
    • 2016
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the underwater platform. Various flow conditions were considered to analyze the fluid-dynamics motion parameters of the projectile. The water level of platform and the current speed around the projectile were the main parametric variables. The numerical calculations were conducted up to 0.75sec in physical time scale. The dynamics tendency of the projectile was almost identical with respect to the water level variation due to the constant buoyancy term. The moving speed of the projectile along the vertical axis inside the platform decreased when the current speed increased. This is because the inflow from outside of the platform impeded development of the compressed air emitted from the floor surface of the launch platform. As a result, the fluid force acting on the lower surface of the projectile decreased, and injection time of the projectile from the platform was delayed.

무베어링 로터 허브의 공기역학적 항력 예측 (Aerodynamic Drag Prediction of a Bearingless Rotor Hub)

  • 강희정
    • 한국항공우주학회지
    • /
    • 제40권8호
    • /
    • pp.655-661
    • /
    • 2012
  • 본 연구에서는 비정렬 중첩 혼합 격자계를 사용하는 전산유체기법으로 무베어링 로터허브의 공기역학적 항력을 계산하였다. 동체와 로터 허브 모두 점성 항력보다는 압력 항력이 주요 요소로 작용하고 있으며, 토크 튜브의 항력이 허브 항력에서 가장 큰 비중을 차지하고 있음을 확인할 수 있었다. 허브 항력은 동체 항력 대비 39~41%를 차지하는 것으로 나타났다. 최종적으로 개발된 헬리콥터의 항력 추세와의 비교를 통해, 설계된 무베어링 로터 허브의 항력은 요구도를 충족시키는 것으로 확인되었다.

Gurney플랩과 제트 플랩을 혼용한 유동제어 기법에 관한 수치적 연구 (Numerical Study About Flow Control Using Blending Gurney Flap with Jet Flap)

  • 최성윤;권오준
    • 한국항공우주학회지
    • /
    • 제35권7호
    • /
    • pp.565-574
    • /
    • 2007
  • 본 연구에서는 NACA 0012 익형 주위의 비교적 높은 레이놀즈수 유동장에 대한 Gurney 플랩과 제트 플랩을 혼용한 유동제어 기법의 유동제어 특성에 대하여 비정렬 격자계를 사용하는 수치적 기법을 이용하여 살펴보았다. 혼합제어 기법의 유동제어 특성을 파악하기 위하여 유동제어에 따른 공력계수 및 모멘트 계수의 변화를 혼합제어 기법을 구성하는 각각의 유동제어 기법들의 결과들과 비교하여 살펴보았다. 혼합제어 기법의 경우 제트 플랩만을 고려한 경우에 비하여 상당히 낮은 무차원 세기의 제트를 이용하여도 유사한 양력 향상 특성을 획득할 수 있었으며, Gurney 플랩만을 이용한 경우에 나타나는 항력의 증가를 완화시켜 주었다.

비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석 (CAVITATION FLOW ANALYSIS OF 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES)

  • 안상준;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.20-24
    • /
    • 2011
  • In this paper, numerical simulation of cavitation flow for modified NACA66 hydrofoil was made by using the multi-phase RANS equation based on pseudo-compressibility. The Homogeneous mixture model comprised of the mixture continuity, mixture momentum and liquid volume fraction equations was utilized. A vertex-centered finite-volume method was used in conjunction 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing The Spalart-Allmaras one equation model was employed for the closure of turbulence. Reasonable agreements were obtained between the calculation results and the experiment for pressure coefficients on the hydrofoil surface.

  • PDF